153 research outputs found

    Epidemiology and detection as options for control of viral and parasitic foodborne disease.

    Get PDF
    Human enteric viruses and protozoal parasites are important causes of emerging food and waterborne disease. Epidemiologic investigation and detection of the agents in clinical, food, and water specimens, which are traditionally used to establish the cause of disease outbreaks, are either cumbersome, expensive, and frequently unavailable or unattempted for the important food and waterborne enteric viruses and protozoa. However, the recent introduction of regulatory testing mandates, alternative testing strategies, and increased epidemiologic surveillance for food and waterborne disease should significantly improve the ability to detect and control these agents. We discuss new methods of investigating foodborne viral and parasitic disease and the future of these methods in recognizing, identifying, and controlling disease agents

    Virus–Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences

    Get PDF
    Eukaryotic virus–bacteria interactions have recently become an emerging topic of study due to multiple significant examples related to human pathogens of clinical interest. However, such omnipresent and likely important interactions for viruses and bacteria relevant to the applied and agricultural sciences have not been reviewed or compiled. The fundamental basis of this review is that these interactions have importance and deserve more investigation, as numerous potential consequences and applications arising from their discovery are relevant to the applied sciences. The purpose of this review is to highlight and summarize eukaryotic virus–bacteria findings in the food/water, horticultural, and animal sciences. In many cases in the agricultural sciences, mechanistic understandings of the effects of virus–bacteria interactions remain unstudied, and many studies solely focus on co-infections of bacterial and viral pathogens. Given recent findings relative to human viral pathogens, further research related to virus–bacteria interactions would likely result in numerous discoveries and beneficial applications

    Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain

    Get PDF
    AbstractHuman noroviruses (NoV) are the leading cause of acute viral gastroenteritis worldwide. Significant antigenic diversity of NoV strains has limited the availability of broadly reactive ligands for design of detection assays. The purpose of this work was to produce and characterize single stranded (ss)DNA aptamers with binding specificity to human NoV using an easily produced NoV target—the P domain protein. Aptamer selection was done using SELEX (Systematic Evolution of Ligands by EXponential enrichment) directed against an Escherichia coli-expressed and purified epidemic NoV GII.4 strain P domain. Two of six unique aptamers (designated M1 and M6-2) were chosen for characterization. Inclusivity testing using an enzyme-linked aptamer sorbent assay (ELASA) against a panel of 14 virus-like particles (VLPs) showed these aptamers had broad reactivity and exhibited strong binding to GI.7, GII.2, two GII.4 strains, and GII.7 VLPs. Aptamer M6-2 exhibited at least low to moderate binding to all VLPs tested. Aptamers significantly (p<0.05) bound virus in partially purified GII.4 New Orleans outbreak stool specimens as demonstrated by ELASA and aptamer magnetic capture (AMC) followed by RT-qPCR. This is the first demonstration of human NoV P domain protein as a functional target for the selection of nucleic acid aptamers that specifically bind and broadly recognize diverse human NoV strains

    Sample Preparation: The Forgotten Beginning

    Get PDF
    Advances in molecular technologies and automated instrumentation have provided many opportunities for improved detection and identification of microorganisms; however, the upstream sample preparation steps needed to apply these advances to foods have not been adequately researched or developed. Thus, the extent to which these advances have improved food microbiology has been limited. The purpose of this review is to present the current state of sample preparation, to identify knowledge gaps and opportunities for improvement, and to recognize the need to support greater research and development efforts on preparative methods in food microbiology. The discussion focuses on the need to push technological developments toward methods that do not rely on enrichment culture. Among the four functional components of microbiological analysis (i.e., sampling, separation, concentration, detection), the separation and concentration components need to be researched more extensively to achieve rapid, direct, and quantitative methods. The usefulness of borrowing concepts of separation and concentration from other disciplines and the need to regard the microorganism as a physicochemical analyte that may be directly extracted from the food matrix are discussed. The development of next-generation systems that holistically integrate sample preparation with rapid, automated detection will require interdisciplinary collaboration and substantially increased funding

    Detection of Gram-Negative Histamine-Producing Bacteria in Fish: A Comparative Study

    Get PDF
    ABSTRACT Poisoning due to ingestion of foods with elevated levels of biogenic amines (histamine, putrescine, cadaverine, and tyramine) is well documented. Histamine fish poisoning largely is due to growth of naturally occurring bacteria associated with scombroid fish species. A rapid and reliable method is needed to screen for the presence of histamine-forming bacteria in fish. This study included a comparison of three methods for the detection of histamine-producing bacteria. A total of 152 histamineproducing and non-histamine-producing bacteria from multiple sources were screened using a modified Niven&apos;s agar method, a potentiometric method, and a PCR-based assay targeting a 709-bp fragment of the histidine decarboxylase gene. Histamine production by bacterial isolates was confirmed by high-performance liquid chromatography (HPLC). Bacterial strains were categorized as producing high amounts of histamine, low amounts of histamine, or no histamine. Of the 152 strains tested, 128 (84%) were positive with the Niven&apos;s agar method, 73 (48%) were positive with the potentiometric technique, and 74 (49%) were positive with the PCR assay. Overall, a 38% false-positive rate was observed with the modified Niven&apos;s agar method, although this method detected both low-histamine and high-histamine strains. There was a high degree of concordance (.99%) between results of the potentiometric and PCR methods, but neither of these methods detected low-histamine bacteria. These observations support the need for a simple and straightforward yet sensitive method for detecting histamine-producing bacteria in seafood and environmental samples

    Integrated microfluidic tmRNA purification and real-time NASBA device for molecular diagnostics.

    Get PDF
    We demonstrate the first integrated microfluidic tmRNA purification and nucleic acid sequence-based amplification (NASBA) device incorporating real-time detection. The real-time amplification and detection step produces pathogen-specific response in < 3 min from the chip-purified RNA from 100 lysed bacteria. On-chip RNA purification uses a new silica bead immobilization method. On-chip amplification uses custom-designed high-selectivity primers and real-time detection uses molecular beacon fluorescent probe technology; both are integrated on-chip with NASBA. Present in all bacteria, tmRNA (10Sa RNA) includes organism-specific identification sequences, exhibits unusually high stability relative to mRNA, and has high copy number per organism; the latter two factors improve the limit of detection, accelerate time-to-positive response, and suit this approach ideally to the detection of small numbers of bacteria. Device efficacy was demonstrated by integrated on-chip purification, amplification, and real-time detection of 100 E. coli bacteria in 100 microL of crude lysate in under 30 min for the entire process

    Contamination of Fresh Produce by Microbial Indicators on Farms and in Packing Facilities: Elucidation of Environmental Routes

    Get PDF
    ABSTRACT To improve food safety on farms, it is critical to quantify the impact of environmental microbial contamination sources on fresh produce. However, studies are hampered by difficulties achieving study designs with powered sample sizes to elucidate relationships between environmental and produce contamination. Our goal was to quantify, in the agricultural production environment, the relationship between microbial contamination on hands, soil, and water and contamination on fresh produce. In 11 farms and packing facilities in northern Mexico, we applied a matched study design: composite samples (n � 636, equivalent to 11,046 units) of produce rinses were matched to water, soil, and worker hand rinses during two growing seasons. Microbial indicators (coliforms, Escherichia coli, Enterococcus spp., and somatic coliphage) were quantified from composite samples. Statistical measures of association and correlations were calculated through Spearman’s correlation, linear regression, and logistic regression models. The concentrations of all microbial indicators were positively correlated between produce and hands ( � range, 0.41 to 0.75; P � 0.01). When E. coli was present on hands, the handled produce was nine times more likely to contain E. coli (P � 0.05). Similarly, when coliphage was present on hands, the handled produce was eight times more likely to contain coliphage (P � 0.05). There were relatively low concentrations of indicators in soil and water samples, and a few sporadic significant associations were observed between contamination of soil and water and contamination of produce. This methodology provides a foundation for future field studies, and results highlight the need for interventions surrounding farmworker hygiene and sanitation to reduce microbial contamination of farmworkers’ hands. IMPORTANCE This study of the relationships between microbes on produce and in the farm environment can be used to support the design of targeted interventions to prevent or reduce microbial contamination of fresh produce with associated reductions in foodborne illness. KEYWORDS environmental microbiology, food-borne pathogens, produc

    Evaluation of a novel chlorine dioxide-based packaging technology to reduce human enteric virus contamination on refrigerated tomatoes and blueberries

    Get PDF
    IntroductionChlorine dioxide (ClO2) is a promising antimicrobial with various food applications, one of those being inclusion in packaging. The purpose of this study was to evaluate a novel ClO2-based antimicrobial packaging system (InvisiShield™) for its efficacy against human norovirus (hNoV) and hepatitis A virus (HAV) in refrigerated fresh produce.MethodsGrape tomatoes or blueberries were placed in polypropylene trays and selectively inoculated with 6.0 log10 hNoV Genome Equivalent Copies (GEC; 20% stool suspension) or 6.2 log10 HAV GEC (cell culture lysate). Trays were heat sealed with a three-phase polymer film consisting of a base, channeling agent, and the ClO2 active (treatment); or control (no active) film and stored at 7°C for 24, 48 h, and 7 days. At each timepoint, the product was collected and processed for virus concentration using the sequential steps of elution and polyethylene glycol precipitation. Viruses in extracts were quantified using RNase-RT-qPCR.Results and discussionLog10 reductions (LR) in hNoV GEC for tomatoes were 2.2 ± 1.3, 2.9 ± 0.7, and 3.6 ± 0.3, after 24, 48 h and 7 days, respectively. For blueberries, hNoV LR were 1.4 ± 0.7, 1.7 ± 0.5, and 2.7 ± 0.2 GEC, respectively. Hepatitis A virus GEC LR were 0.4 ± 0.2, 1.0 ± 0.1, and 2.1 ± 0.7 for tomatoes, and 0.1 ± 0.2, 1.2 ± 0.4, and 3.2 ± 0.2 for blueberries, after 24, 48 h and 7 days, respectively. Position of the fruit in the tray did not affect inactivation (p &gt; 0.05). Sensory analysis on the treated tomato products revealed no statistically significant difference in appearance, flavor and texture attributes compared to the control. This novel ClO2-based antimicrobial packaging system effectively reduced concentrations of hNoV and HAV, as evaluated using reduction in GEC as proxy for infectivity, on grape tomatoes and blueberries after one day, with efficacy improving over 7 days of refrigerated storage. This technology shows promise as an antiviral treatment as applied to refrigerated fresh produce items

    The Prevalence of Norovirus in returning international travelers with diarrhea

    Get PDF
    Background: There is a high incidence of diarrhea in traveling populations. Norovirus (NV) infection is a common cause of diarrhea and is associated with 7% of all diarrhea related deaths in the US. However, data on the overall prevalence of NV infection in traveling populations is limited. Furthermore, the prevalence of NV amongst travelers returning to Europe has not been reported. This study determined the prevalence of NV among international travelers returning to Germany from over 50 destinations in and outside Europe. Methods: Stool samples of a total of 104 patients with a recent (&lt; 14days) history of international travel (55 male, mean age 37 yrs.) were tested for the presence of NV genogroup (GG) I and II infection using a sensitive and well established quantitative RT PCR method. 57 patients experienced diarrhea at the time of presentation at the Department of Infectious Diseases & Tropical Medicine. The remaining 47 patients had no experience of diarrhea or other gastrointestinal symptoms for at least 14 days prior to their date of presentation at our institute. Results: In our cohort, NV infection was detected in 15.7% of returning travelers with diarrhea. The closer to the date of return symptoms appeared, the higher the incidence of NV, ranging as high as 21.2% within the first four days after return. Conclusions: In our cohort, NV infection was shown to be frequent among returning travelers especially in those with diarrhea, with over 1/5 of diarrhea patients tested positive for NV within the first four days after their return to Germany. Due to this prevalence, routine testing for NV infection and hygienic precautions may be warranted in this group. This is especially applicable to patients at an increased risk of spreading the disease, such as healthcare workers, teachers or food-handlers
    corecore