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a b s t r a c t

Human noroviruses (NoV) are the leading cause of acute viral gastroenteritis worldwide. Significant anti-
genic diversity of NoV strains has limited the availability of broadly reactive ligands for design of detection
assays. The purpose of this work was to produce and characterize single stranded (ss)DNA aptamers
with binding specificity to human NoV using an easily produced NoV target—the P domain protein.
Aptamer selection was done using SELEX (Systematic Evolution of Ligands by EXponential enrichment)
directed against an Escherichia coli-expressed and purified epidemic NoV GII.4 strain P domain. Two of six
unique aptamers (designated M1 and M6-2) were chosen for characterization. Inclusivity testing using
an enzyme-linked aptamer sorbent assay (ELASA) against a panel of 14 virus-like particles (VLPs) showed
these aptamers had broad reactivity and exhibited strong binding to GI.7, GII.2, two GII.4 strains, and GII.7
VLPs. Aptamer M6-2 exhibited at least low to moderate binding to all VLPs tested. Aptamers significantly
(p < 0.05) bound virus in partially purified GII.4 New Orleans outbreak stool specimens as demonstrated
by ELASA and aptamer magnetic capture (AMC) followed by RT-qPCR. This is the first demonstration
of human NoV P domain protein as a functional target for the selection of nucleic acid aptamers that
specifically bind and broadly recognize diverse human NoV strains.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction2

Human noroviruses (NoV) are the most common cause of acute
viral gastroenteritis worldwide (Glass et al., 2009) and the lead-
ing cause of foodborne illness in the United States (Scallan et al.,
2011). Despite their public health significance, the availability of
routine detection methods for these viruses is limited, in part due
to the absence of an in vitro cultivation method. While molecular
amplification (specifically reverse transcriptase quantitative PCR or
RT-qPCR) is usually used for NoV detection and genome quantifica-
tion by the public health sector, it is not commonly used in clinical
diagnostics. Because of sample complexity (fecal matrix) and the
need to remove PCR inhibitors, ligand-based detection methods are
more appealing for clinical diagnostics.
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E-mail address: mdmoore5@ncsu.edu (M.D. Moore).

1 Present address: Food Microbiology Division, Ministry of Food and Drug safety,
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2 NoV; norovirus(es). ELASA; enzyme-linked aptamer-sorbent assay. AMC;
aptamer magnetic capture. RT-qPCR; reverse transcriptase quantitative polymerase
chain reaction.

Unfortunately, human NoV are genetically and antigenically
diverse, complicating the identification of broadly reactive ligands
(e.g., antibodies) that can be used for virus capture and/or detection.
The lack of broad reactivity by antibodies to human NoV strains has
been well documented (Burton-MacLeod et al., 2004; Shiota et al.,
2007), and for this reason, enzyme immunoassays display poor sen-
sitivity (Costantini et al., 2010; Kele et al., 2011). Other candidate
NoV ligands have been explored, such as putative NoV infection
co-factors known as histo-blood group antigens (HBGAs) (Cannon
and Vinjé, 2008; Harrington et al., 2004) and porcine gastric mucin,
which contains some HBGAs (Pan et al., 2012; Tian et al., 2008);
peptides (Rogers et al., 2013); and single chain antibodies (Huang
et al., 2014). While some of these react with multiple human NoV
strains or VLPs, no completely inclusive human NoV ligand has been
reported.

For both pathogen capture and purification, nucleic acid
aptamers are a promising alternative ligand. Aptamers are short
(20–80 mer) single-stranded DNA or RNA sequences that interact
(bind) with their target through their three-dimensional structures.
They offer advantages over antibody-based affinity molecules in
their ease of production, purification, modification, physical stabil-
ity, and lower cost (Brody and Gold, 2000; Murphy, 2003; Tombelli
et al., 2007). Nucleic acid aptamers are selected in vitro based
on affinity for a target molecule, protein, virus, or cell using a
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molecular-based iterative enrichment method called SELEX (sys-
tematic evolution of ligands by exponential enrichment).

In the absence of a robust in vitro cultivation method, the only
source of whole viruses for ligand selection is stool samples from
infected individuals. As infectious virus in stool is a difficult sample
to obtain and work with, virus-like particles (VLPs) are frequently
used instead for many types of studies, from disinfection to immune
response characterization (Cheetham et al., 2007; Lou et al., 2012;
Nilsson et al., 2009; Souza et al., 2007; Vongpunsawad et al., 2013).
VLPs demonstrate similar binding behavior to HBGAs as human
NoV particles (Huang et al., 2003; White et al., 1996); however,
their production and purification can be costly, time consuming,
and variable (Koho et al., 2012). An alternative is to focus selection
on a portion of the human NoV major capsid protein or VP1. Unlike
VLPs for which the entire capsid [all 180 copies of the major capsid
protein (VP1)] assembles as nucleic-acid free “ghosts,” “P domain
proteins” consist of proteins containing the outermost domain of
the NoV VP1 capsid protein. Like VLPs and human NoVs, these pro-
teins retain their antigenicity, can still bind to histo-blood group
antigens and have been used for structural, binding, and vaccina-
tion studies (Cao et al., 2007; Koho et al., 2012; Tan et al., 2011).
P domain proteins can easily be produced in a bacterial system
(Tan and Jiang, 2005) and expressed and purified at low cost and
with high yield, making them an attractive target for ligand selec-
tion. In this study, we describe the production of single stranded
(ss)DNA aptamers with binding affinity to a representative human
NoV strain by SELEX using a P domain protein. Once isolated and
characterized, promising aptamer candidates were further tested
for their degree of reactivity with a broad panel of human NoV
VLPs. They were then used to develop prototype methods to cap-
ture and/or detect GII.4 human NoV in outbreak-associated fecal
specimens.

2. Materials and methods

2.1. Viruses, virus-free fecal specimens, and virus-like particles

A GII.4 outbreak-derived human clinical (fecal) sample
[sequence-confirmed to be the “2006b” cluster of GII.4 epidemic
strains (Tsai et al., 2014; Yang et al., 2010)] was obtained courtesy of
S.R. Greene (North Carolina Department of Health and Human Ser-
vices, Raleigh, NC) and suspended 20% in phosphate-buffered saline
(PBS). Human NoV-negative stool samples derived pre-exposure
from individuals participating in a human challenge study were
kindly provided by C.L. Moe (Emory University, Atlanta, GA). In
some instances, stool suspensions were used without further pro-
cessing. In other cases, the suspensions were partially purified by
chloroform extraction (Shin and Sobsey, 2008). All suspensions
were stored at −80 ◦C until use in experiments. Virus-like parti-
cles (VLPs), which consisted of purified virus capsid without the
viral genome, were provided courtesy of R. Atmar (Baylor College of
Medicine, Houston, TX). The following VLPs were available for this
study: GI.1, GI.4, GI.6, GI.7, GI.8, GII.1, GII.2, GII.3, GII.4 (2 strains),
GII.6, GII.7, GII.12, and GII.17.

2.2. Preparation of P-domain protein

The clinical outbreak stool specimen used for creation of the
P domain was confirmed to belong to the 2006b GII.4 cluster by
RT-PCR amplification and sequencing (data not shown). Primers
specific to the P domain region (nt 5744–6704), which included
flanking BamHI and NotI restriction enzyme sites, were designed
using the GII.4 2006b sequence [accession number: JN400603; (Tsai
et al., 2014)] based on the locations of previously reported primers
without a hinge (Tan and Jiang, 2005; and Table 1). These were

used to produce cDNA using the RETROscript kit (Ambion/Applied
Biosystems) and amplified in PCR with the designed primers [GII.4
P domain forward/reverse, Table 1] and the Platinum Taq system
(Invitrogen). The products were cleaned with the QIAquick PCR
purification kit (Qiagen) and restriction digested with BamHI and
NotI (New England BioLabs, Ipswtich, MA). This was ligated into a
similarly digested pGEX-4T-1 plasmid (GE Healthcare, Piscataway,
NJ) containing an N-terminal glutathione-S-transferase (GST) tag
with a 2:1 insert: vector ratio. The vector was then electroporated
into electrocompetent E. coli BL21(DE3) cells [E. cloni EXPRESS;
Lucigen, Middleton, WI]. Successful transformants were screened
by colony PCR and confirmed by sequencing (Genewiz, Inc.).

P domain–GST fusion protein and GST-only cultures were grown
overnight in 2X yeast extract tryptone ampicillin (YTA) broth incu-
bated at 37 ◦C. Thereafter, the bacteria were pelleted, reconstituted
in 2X YTA, and used to seed a larger 2X YTA culture that was grown
at 37 ◦C to an OD600 of 0.6–0.9. The cultures were then induced
with 1.0 mM isopropyl �-d-1-thiogalactopyranoside (IPTG) and left
overnight at 25 ◦C with gentle shaking. Cells were purified by cen-
trifugation and lysed with 106 �m acid-washed beads (Sigma) and
a mini bead beater (Biospec Products Inc., Bartlesville, OK). For
further purification, the lysate was incubated 1:1 (v/v) in 50% glu-
tathione sepharose 4B agarose bead solution (GE Healthcare, Little
Chalfont, United Kingdom) for 30–45 min at 22 ◦C, followed by cen-
trifugation and washing of the bead-protein complexes. Elution
from the fusion protein was done using 50 mM Tris-HCl/10 mM
reduced glutathione buffer (pH 8.0) mixed 1:1 with the bead
volume and incubated for 15–20 min at 22 ◦C followed by cen-
trifugation. Presence of the P domain protein in the lysate and
eluate was confirmed by Western blotting on nitrocellulose mem-
branes using anti-GST primary antibody (Thermo Fisher Scientific,
Waltham, MA) and anti-GII.4 primary antibody (ab80024, Abcam,
Cambridge, England).

2.3. Aptamer selection (SELEX) and characterization

2.3.1. Preparation of DNA library
An 81-base combinatorial DNA library having a 40 nt vari-

able region was obtained from Integrated DNA Technologies (IDT,
Coralville, IA). The library was prepared for SELEX by producing
an 81 bp double-stranded (ds)DNA molecule that was unlabeled at
the 5′ end and labeled at 3′ end with biotin by PCR using a for-
ward constant region primer and a biotinylated reverse constant
region primer (Table 1), as described previously by Dwivedi et al.
(2010). For separating the biotinylated DNA strand from its comple-
mentary strand, the labeled dsDNA was coupled with Streptavidin
MagneSphere® Paramagnetic particles (Promega) and captured by
magnet (MPC-M magnetic particle concentrator, Dynal A.S. Oslo,
Norway). The captured dsDNA was denatured by treatment with
0.15 M sodium hydroxide and after three washes with Tris-EDTA
(TE), the immobilized biotinylated strand was released by incubat-
ing beads in 28% ammonium hydroxide at 85 ◦C for 10 min. Removal
of residual ammonium hydroxide was achieved using Vivaspin 500
filters (10,000 molecular weight cut-off, Sartorius Stedim Biotech,
Cedex, France) with two washes of nuclease-free water. The puri-
fied ssDNA was stored in −80 ◦C until use.

2.3.2. Selection of aptamers using GII.4 human NoV P domain
protein

SELEX and counter-SELEX were performed using the P
domain–GST fusion protein and the GST tag with NoV-negative
human stool and bead matrix as targets, respectively. Briefly,
300–500 pmol of the library was pre-heated at 90 ◦C for 10 min
and cooled on ice for 10 min. For counter-SELEX, the library was
exposed to a 125 microliter (�l) bed volume of the GST beads
for 1 h at 22 ◦C with end-over-end mixing. The mixture was cen-
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Table 1
Oligonucleotides used in the selection and characterization of aptamers with binding affinity to human NoV.

Name Sequence 5–3′ ′

DNA aptamer library AGTATACGTATTACCTGCAGC-N40-CGATATCTCGGAGATCTTGC
Biotin–reverse constant Biotin-GCAAGATCTCCGAGATATCG
Forward constant AGTATACGTATTACCTGCAGC
Reverse constant GCAAGATCTCCGAGATATCG
GII.4 P domain forwarda GCACGGATCCTCAAGAACTAAACCATTTACTGTC
GII.4 P domain reverse GGACGCGGCCGCTTATAAAGCACGTCTACGCCC
JJV2F CAAGAGTCAATGTTTAGGTGGATGAG
G2SKR CCRCCNGCATRHCCRTTRTACAT
COG2R CCRCCNGCATRHCCRTTRTACAT
Ring 2P probe 56-FAM TGGGAGGGCGATCGCAATCT-3BHQ 1
T7GII.4F TAATACGACTCAACTATAGCAAGAGTCAATGTTTAGGTGGATGAG
GII.4R2 GTTGGGAAATTCGGTGGGACTG

a Underlined sequences are restriction enzyme recognition sites.

trifuged at 500 × g for 5 min and the supernatant reserved. DNA was
purified by phenol:chloroform:isoamyl alcohol (25:24:1) extrac-
tion and ethanol precipitation [10% (v/v) 3 M sodium acetate, 200%
(v/v) 100% ethanol, and 50 �g/ml Ambion GlycoBlue (Life Tech-
nologies, Grand Island, NY)] with reconstitution of the pellet in
25 �l DEPC-treated water. The DNA concentration was adjusted to
20–40 ng/�l and amplified by PCR using 2 �l of the template and
primers described in Table 1. The reactions of 50 �l contained 1X
Go Taq® Buffer (Promega), 500 nM of Conserved Forward Primer,
500 nM biotinylated conserved reverse primer, 0.2 mM Promega
PCR Nucleotide mix (Promega), 0.5 �g single-stranded DNA binding
protein (Promega), and 2 U Go Taq® DNA polymerase (Promega). A
Bio-Rad T100 Thermal Cycler was used for the PCR (Bio-Rad Labo-
ratories, Hercules, CA) with an initial 95 ◦C step for 2 min followed
by 30 cycles of 95 ◦C for 30 s, 50–65 ◦C for 30 s (see below), and 72 ◦C
for 15 s; and a final extension at 72 ◦C for 5 min. After every round
of SELEX and counter-SELEX, an initial annealing gradient (from 50
to 65 ◦C) using the cycling conditions above was used to determine
the optimal annealing temperature prior to the larger regeneration
of the remaining pool. This temperature optimization was required
to reduce concatamers and primer dimers. The amplified pool was
then made into biotin-labeled ssDNA as described above.

The initial counter-SELEX was followed by seven rounds of
positive selection which were performed in the same manner as
the counter-SELEX described above except that the P domain-GST
fusion protein lysate was used instead of the GST lysate; unbound
sequences were removed by washing; and the protein-aptamer
complexes were eluted from the beads using a glutathione elu-
tion buffer [50 mM Tris–HCl/10 mM reduced glutathione buffer
(pH 8.0)] followed by phenol–chloroform extraction and ethanol
precipitation. Prior to sequencing, another counter-SELEX round
was performed using GST lysate and human NoV-negative human
stool. The amplified pool was then resolved on a 2% agarose gel
and purified with the QIAquick Gel Extraction Kit (Qiagen). The
purified pool was cloned via electroporation using the TOPO® TA
Cloning Kit (Invitrogen). Colonies were selected, grown, plasmid-
extracted, and screened by PCR. Selected colony plasmids were then
sequenced (Genewiz, Inc.).

2.3.3. Analysis of aptamer sequences, structural folding, and
stability

Usable aptamer sequences obtained were grouped into identi-
cal/similar sequences, and the proportion of each sequence in the
pool determined. Structural folding analysis and �G prediction of
the candidate aptamer sequences was performed using the DNA
Mfold online server (http://mfold.rna.albany.edu/) using 0.5 mM
magnesium, 1 mM sodium, and 23 ◦C as input parameters (Zuker,
2003). Candidate sequences from the pool were selected on the
basis of how many times they repeated in the pool, low �G value
(stability), and uniqueness and formation of loops in the secondary

structure. Motif analysis was done for aptamers M1, M5, and M6-2
using the MEME Suite 4.10.0 online server (http://meme.nbcr.net/
meme/tools/meme) with the criteria of a minimum motif length
of 6 bases having no more than two base mismatches (Bailey and
Elkan, 1994; Bailey et al., 2009).

2.3.4. Binding analysis using enzyme-linked aptamer sorbent
assay (ELASA)

Binding affinity assays were done using the candidate aptamers
(M1 and M6-2) and a panel of virus-like particles (VLPs) corre-
sponding to genogroup I [GI.1 (Norwalk virus), GI.2, GI.4, GI.6, GI.7
and GI.8] and genogroup II [GII.1, GII.2 (SMV), GII.3, GII.4 (Hous-
ton and Grimsby), GII.6, GII.7, GII.12 and GII.17] human NoV, and
also for chloroform extracted 20% stool suspensions derived from a
patient confirmed to have GII.4 New Orleans infection. This was
done using a previously reported ELISA-like method (Escudero-
Abarca et al., 2014; Moe et al., 2004; Rogers et al., 2013) that we
refer to as enzyme-linked aptamer-sorbent assay (ELASA). Briefly,
VLP suspensions (1.3–4.3 mg/ml) were adjusted to a concentra-
tion of 3 �g/ml in PBS; in the case of whole virus, 10-fold serial
dilutions of chloroform extracted 20% GII.4 New Orleans stool solu-
tions were made. One hundred �l aliquots of VLP or diluted stool
were placed on flat-bottom polystyrene 96 well plates (Costar
3591, Fisher, Pittsburg, PA) and incubated overnight at 4 ◦C. After
removal of the fluid, the wells were blocked with 200 �l of 5%
skim milk in PBS-Tween 20 (0.05%) (PBST) with a 10 nM mix of
unrelated DNA oligonucleotides [Listeria monocytogenes primers
hlyQF/R and L23SQF/R (Rodríguez-Lázaro et al., 2004)] for 2 h at
22 ◦C with gentle shaking. Blocking solution was discarded and
three washes of 200 �l PBST per well were performed. Next, 100 �l
of biotinylated aptamer (1 �M) was added to each well, and the
plate was incubated for 1 h at 22 ◦C with gentle shaking. After
removal of the liquid, the plates were washed 4 times with PBST.
One hundred �l of ELISA-grade streptavidin-horseradish peroxi-
dase (1 mg/ml, 1:5000, Invitrogen, Carlsbad, CA) was added per
well with incubation for 15 min at 22 ◦C with shaking. After remov-
ing the unbound enzyme and rewashing with PBST, 100 �l of
3,3′,5,5′-Tetramethylbenzidine (TMB) microwell peroxidase sub-
strate system [solution A:B (1:1), KPL, Gaithersburg, MD] was added
for color development, and absorbance at 450 nm was recorded
using a microplate reader (Tecan Infinite M200pro, Tecan Group
Ltd., Männedorf, Switzerland).

All ELASAs were replicated on three separate occasions with at
least three wells per replicate. Results were expressed as the ratio
between the absorbance values for test samples divided by those for
the negative control (no VLP). As per convention (Ebel et al., 2002;
Escudero-Abarca et al., 2014; Hirneisen and Kniel, 2012), a VLP/No
VLP ratio of less than 2.0 was considered low to no binding (−);
2.0–5.0 was considered low binding (±); 5.0–10.0 was considered
medium binding (+); and >10.0 was considered strong binding (++).

http://mfold.rna.albany.edu/
http://mfold.rna.albany.edu/
http://mfold.rna.albany.edu/
http://mfold.rna.albany.edu/
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http://meme.nbcr.net/meme/tools/meme
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Table 2
Aptamer sequences obtained after SELEX against NoV GII.4 P domain.

Name �G Variable region sequencea Occurrence in pool

M1b −7.11 TGTTTATGGGGATAAACGTATCTAATTCGTGTACTAATCA 3/11
M9-2 −4.12 TGTTAAGGGGAATTAATAATGATAATCCGTCTACTAATCA 2/11
M12-2 −3.95 TGTTAGGGGGAATTAATAATGGATAATCCGTCTACTAATCA 1/11
M13-2 −8.13 TGGGGGGTGGTGCGGTGTGTGGCAGGGGAGCATAGCCGGGGGCCCCCT 1/11
M6-2b −8.33 TGGGAAGAGGTCCGGTAAATGCAGGGTCAGCCCGGAGAG 1/11
M5b −6.43 TGGGGGGTGGTGCGGTGTGTGACAAGGGAGCATAGCCGGGGGCCCCCT 3/11

a Bolded sequences were two candidates chosen for further characterization.
b Sequences chosen for motif analysis using MEME.

Means and standard deviations for ratios associated with replicate
experiments were calculated using Microsoft Excel. Additionally,
for plates containing positive and negative chloroform-extracted
stool, statistical comparison was performed using a one-way anal-
ysis of variance (ANOVA) with Tukey’s multiple comparison using
GraphPad Prism version 5.0d (San Diego, CA).

2.4. Aptamer magnetic capture (AMC)-RT-qPCR for detection

2.4.1. Aptamer magnetic capture (AMC)
As proof-of-concept, biotinylated aptamers were used to con-

centrate human NoV from stool samples. Thirty �g of Dynabeads®

MyOne Streptavidin C1 magnetic beads (Invitrogen-Dynal AS, Oslo,
Norway) were diluted in 1 ml PBS + 0.05% PBST, mixed, and recap-
tured using the Dynal MPC-M magnetic particle concentrator
(Invitrogen-Dynal). The beads were resuspended in 1 ml of 5% skim
milk and blocked overnight at 4 ◦C with rotation. The beads were
then twice washed with 500 �l PBST, resuspended in 50 �l PBST,
and stored at 4 ◦C until use. These beads will hereafter be referred
to as “blocked beads.”

Aptamer capture of human NoV from stool was performed based
on the protocol of Cannon and Vinjé (2008) with substitution of
aptamers for purified histo-blood group antigens (HBGAs). Ten-fold
serial dilutions of a previously aliquoted 20% GII.4 stool suspen-
sion were prepared in PBS and 100 �l of each dilution was placed
into a dedicated tube containing 900 �l PBST and 15 �l of biotiny-
lated aptamer (100 �M, ∼5.9 ng total). The contents were mixed
by end-over-end rotation for 1 h at 22 ◦C. Fifty �l of the blocked
beads were then added, and the tubes incubated for another hour
with flipping at 22 ◦C. Beads were magnetically recovered and
washed once with 500 �l PBST followed by one wash with 500 �l
PBS. Beads were resuspended in 100 �l PBS and stored at −80 ◦C
until RNA extraction. Negative controls consisted of tubes contain-
ing 450 �l PBST, 450 �l Superblock T20 (Thermo Fisher Scientific,
Waltham, MA), 100 �l of diluted sample, and 50 �l of blocked
beads. RNA extraction was done using the NucliSENS® easyMAG
system (bioMerieux SA, Marcy l’Etoile, France) according to the
manufacturer’s instructions with a 40 �l final elution volume. The
eluted RNA was immediately stored at −80 ◦C until use in RT-qPCR
(below).

2.4.2. Quantification of virus recovery by RT-qPCR
RNA was amplified by one step RT-qPCR using the Superscript III

Platinum One-Step kit (Invitrogen). Reactions of 25 �l were made
containing 12.5 �l 2x Reaction Mix, 0.5 �l SuperScript III Reverse
Transcriptase/Platinum Taq mix, 200 nM JJV2F primer, 200 nM
COG2R primer, 200 nM Ring2P probe (Jothikumar et al., 2005),
5.5 �l nuclease-free water, and 5 �l template. Reverse transcription
was done at 50 ◦C for 15 min followed by enzyme inactivation at
95 ◦C for 2 min. Amplification was done for 45 cycles of 95 ◦C for 15 s,
54 ◦C for 30 s, and 72 ◦C for 30 s. Quantification of genomic copies
was based upon a standard curve using an in vitro transcribed GII.4
New Orleans amplicon covering a 460 nt range of the genome con-
taining the JJV2F-COG2R primer target region. The amplicon was

quantified using a Nano PhotometerTM Pearl (Denville Scientific,
Inc., South Plainfield, NJ), serially diluted, and used to construct a
standard curve to estimate genomic copies. Amplifiable RT-qPCR
units were estimated based on a standard curve of Ct values from
serial 100 �l dilutions of the 20% GII.4 New Orleans stool isolate
used for the AMC assay that had their genomic RNA extracted and
amplified using RT-qPCR as described above in Section 2.4.1 and
2.4.2.

3. Results

3.1. Aptamer candidates

After seven rounds of SELEX and two rounds of counter-
SELEX, aptamer pools were sequenced as in Section 2.3.2. Eleven
sequences were identified, six of which were unique (Table 2). Can-
didates M1 and M6-2 were selected for further characterization
based on the number of times the sequence occurred in the pool of
sequences [3/11 and 1/11, respectively], low �G values [�G = −7.11
and �G = −8.33 for M1 and M6-2, respectively] (Table 3), and
similarities in secondary structure (Fig. 1). MEME analysis of the
aptamers showed multiple overlapping motifs and multiple motifs
involved in loop regions or the formation of loop regions. More
specifically, when comparing M1 and M6-2, three potential motifs
of at least 6 bases were shared between the two aptamers. Motif 1
contained the sequence TAAA[C,T]G[T,C]A, where base mismatches
are in brackets in respective order of aptamer M1 and M-2; for
example, aptamer M1 contains motif 1 as TAAACGTA and M6-2 has
TAAATGCA. Motif 1 was involved in the stem-loop regions for the
major loop of both aptamers (Fig. 1). Motif 2 was shared between

Table 3
Binding affinity of selected aptamers (M1 and M6-2) to a broad panel of VLPs based
on ELASA.

VLP Aptamer

Mean VLP/No VLP ratio (ratio standard deviation)a

M1 M6-2
GI.1 Norwalk 3.40 (0.67) (±)b 4.28 (0.52) (±)
GI.4 3.17 (0.43) (±) 3.36 (0.24) (±)
GI.6 1.98 (0.38) (−) 2.75 (0.45) (±)
GI.7 7.32 (2.41) (+) 7.56 (2.45) (+)
GI.8 2.61 (0.26) (±) 4.55 (0.81) (±)
GII.1 3.59 (1.55) (±) 4.52 (0.44) (±)
GII.2 Snow Mountain 10.68 (0.70) (++) 12.00 (1.10) (++)
GII.3 2.94 (1.90) (±) 3.16 (0.72) (±)
GII.4 Grimsby 7.59 (0.46) (+) 11.54 (1.70) (++)
GII.4 Houston 10.41 (1.23) (++) 12.98 (1.76) (++)
GII.6 2.38 (0.78) (±) 4.40 (0.85) (+)
GII.7 7.47 (1.15) (+) 8.02 (1.99) (+)
GII.12 4.47 (0.54) (±) 5.55 (0.10) (+)
GII.17 3.94 (1.03) (±) 5.24 (0.75) (+)

a Values indicate the ratio between absorbance readings for test VLP sample
versus negative control (VLP wells absorbance/No VLP wells absorbance) for each
aptamer. Values obtained for the negative control were in the range of 0.1–0.4.

b Results less than 2.0 are considered negative per convention (−); 2.0–5.0 low
binding (±); 5.0–10.0 medium binding (+); and >10.0 strong binding (++).
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Fig. 1. Predicted secondary structures of the M1 and M6-2 ssDNA aptamers generated against the GII.4 P domain with common aptamer pool motifs circled. Secondary
structures of two aptamers generated against the human NoV P domain were selected for further characterization and their secondary structures predicted with the Mfold
server (Zuker, 2003). Additionally, common sequence motifs among all aptamer sequences obtained in the pool were identified with the MEME suite (Bailey and Elkan, 1994;
Bailey et al., 2009). These commonly occurring motif sequences found in the aptamer pool are circled.

aptamers M1 and M6-2, and contained the sequence TGGG[G,A]A.
Motif 3 (sequence TC[G,C][T,G]GTA) occurred in the major loops of
both aptamers. Motifs 4-6 (not shown) on M1 or M6-2 were shared
with aptamer M5. Some of these motifs overlap motifs shared
between M1 and M6-2, and are also involved in stem-loops.

3.2. Aptamer binding inclusivity

Both aptamer candidates exhibited relatively stronger binding
to VLPs representing GII human NoV genotypes over GI genotypes.
Strong binding (++) for both aptamers was observed by ELASA for
GII.2 and GII.4 VLPs. Ratios indicating higher binding under the
“medium” binding category for both aptamers were observed for
GI.7, GII.4 Grimsby (M1 only) and GII.7. Based on an absorbance
ratio cutoff of 2.0, aptamer M6-2 exhibited broader recognition
compared to M1, with some degree of binding to all of the VLPs
tested. Positive signals were quite low for GI.6 and GII.3 VLPs. On
the other hand, aptamer M1 did not appear to bind to GI.6, and had
relatively low signals for GI.8, GII.3, and GII.6 VLPs. Overall, M6-2
had higher VLP/No VLP ratios compared to M1. As expected, assays
using GII.4 VLPs provided some of the highest signal ratios. Inter-
estingly, both aptamers also had GII.2 ratios about as high as the
GII.4 (highest) VLPs.

3.3. Aptamers bind to partially purified human stool samples
obtained from infected individuals

Both the M1 and M6-2 aptamers exhibited binding to seri-
ally diluted partially purified 20% stool specimens obtained from
infected individuals (Fig. 2). Binding was statistically significant
(p < 0.05) relative to human NoV negative stool when the samples
were diluted 10−2 or 10−3. These differences were not statis-
tically significant for the 10−1 dilutions of stool, likely due to
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Fig. 2. Binding ratios of partially purified, serially diluted 20% GII.4 and human NoV-
negative stool samples to selected aptamers by ELASA. Data are presented as ratio of
absorbance for test samples (serially diluted stool) versus the PBS negative control
wells. The asterisk indicates a statistically significant difference (p < 0.05) between
GII.4 positive stool and stool confirmed negative for human NoV. Error bars repre-
sent one standard deviation above/below the mean. X axis is labeled by aptamer
designation and dilution of stool.

matrix-associated non-specific binding. When stool samples were
diluted 10−4 or more, signal was lost, presumably because of
dilution-associated depletion of virus, approaching the assay limit
of detection.

3.4. Aptamer magnetic capture (AMC) coupled to RT-qPCR
applied to outbreak stool specimens

Selected aptamers were used to concentrate HuNoV from
diluted GII.4 New Orleans clinical stool isolates using magnetic
nanoparticles. Concentrated viruses were then quantified by RT-
qPCR. Both aptamers concentrated significantly (p < 0.05) more



46 M.D. Moore et al. / Journal of Biotechnology 209 (2015) 41–49

Fig. 3. Capture of GII.4 New Orleans in stool using aptamer magnetic capture (AMC).
Biotinylated aptamers were incubated with serially diluted 20% suspensions of GII.4
New Orleans containing stool. Aptamer-virus conjugates were then captured with
streptavidin-coated magnetic nanoparticles and quantified by RT-qPCR. AMC using
blocked beads without aptamers served as negative control. Statistically significant
differences between aptamer and control samples (p < 0.05) are designated by an
asterisk.

virus than no aptamer controls at concentrations of 6.79 and 5.86
log10 human NoV genomic copies per ml of stool (Fig. 3).

4. Discussion

In this study, the P domain cloned and expressed from the
genome of a 2007 GII.4 human NoV clinical stool isolate was used as
the target in SELEX for production of ssDNA aptamers. A GII.4 strain
was considered relevant because it belongs to the epidemic geno-
type that has been causing the largest numbers of cases over the
last two decades (Bok et al., 2009; Noel et al., 1999). Furthermore,
the P2 subdomain of the P domain is thought to be involved in host
cell binding, is hypervariable, and likely responsible for antigenic
drift of GII.4 strains (Lindesmith et al., 2008). Given these features,
it is not surprising that the aptamers produced in this study did
not strongly bind to all human NoV VLPs screened. However, they
did exhibit binding to a majority of the VLPs tested, with generally
better binding demonstrated for GII versus GI VLPs. A notable differ-
ence between aptamers M1 and M6-2 was observed for GI.8, GII.6,
and GII.17 VLPs (Table 3). Different binding patterns for these two
aptamers suggest that they may bind to different regions of the P
domain. It could be hypothesized that aptamer M1 binds a less con-
served region of the P domain because it was not as broadly reactive
as M6-2, and overall showed lower signal intensity. As expected,
both aptamers bound well to the GII.4 VLPs, as the aptamer target
was a GII.4 2006b strain. Also as expected, both aptamers displayed
stronger binding to the more recent and sequentially similar GII.4
Houston strain (2001) compared to the older and less sequentially
similar GII.4 Grimsby (1996) strain (Glass et al., 2009; Shanker et al.,
2011). Interestingly, M6-2 showed some degree of binding to all of
the VLPs tested, suggesting that it likely binds a part of the P1 sub-
domain of NoV, where other fairly broadly reactive antibodies have
been found to bind (Kitamoto et al., 2002; Parker et al., 2005; Shiota
et al., 2007).

Multiple common sequence motifs within the variable region
of aptamers M-1 and M6-2 were identified. Many of these motifs
are involved in hairpin-loop or loop structures (Fig. 1) and may
be implicated in aptamer binding to human NoV, as loop and stem-
loop structures are often involved in binding (Kato et al., 2000; Kaur
and Yung, 2012). Such motif analysis can inform future studies.
For example, characterization of the nature of the aptamer binding
domain(s) could be further investigated using nucleotide substi-
tution. Further, identification of common motifs in aptamers M1
and M6-2, in addition to other aptamers might allow the produc-
tion of truncated aptamers that could be combined into a chimeric

aptamer (Kanwar et al., 2011) to create an even more effective
broadly reactive ligand.

Recently, three studies have reported the development of DNA
aptamers having binding affinity to NoV. Giamberardino et al.
(2013) produced aptamers targeting the murine norovirus (MNV)
surrogate using whole virus SELEX, finding that one also bound
GII.3 NoV VLPs. This aptamer was used as a recognition element in
a voltammetry-based biosensor. Beier et al. (2014) created DNA
aptamers using an unspecified GII.4 strain’s entire major capsid
protein (VP1) by a different SELEX process than ours. However, the
work focused primarily on innovations in bioinformatic analysis
and protein-aptamer modeling rather than the functional binding
characterization reported here. Interestingly, the aptamers pro-
duced by Giamberardino et al. (2013) and Beier et al. (2014) had �G
values similar to M1 and M6-2, but the sequences and secondary
structures differed from ours. In both papers, the aptamers pro-
duced were never applied for capture or detection of human NoV
in outbreak-derived stool specimens, and aptamer binding to the
intact capsid of only one genotype of human NoV was confirmed
for any of the reported aptamers.

In a study similar to this one, Escudero-Abarca et al. (2014)
created aptamers using partially purified infectious GII.2 Snow
Mountain virus from stool (whole virus SELEX), as juxtaposed to
the GII.4 P domain target in this work. The aptamers described in
that study and those reported in this paper exhibited similar broad
reactivity and high signal-to-noise ratios, despite the differences
in target. The aptamers also had similar �G values and motifs that
occurred in hairpin-loops. Likewise, similar binding signals were
observed using partially-purified GII.4 stool isolate in the ELASA
assay. Aptamers M1 and M6-2 exhibited lower capture efficiencies
in AMC-RT-qPCR compared to aptamer 25 reported by Escudero-
Abarca et al. (2014). This may be a function of differences in the
counter-selection process, as Escudero-Abarca et al. (2014) per-
formed more counter-SELEX rounds against a greater number of
targets, which likely reduced nonspecific aptamer binding to mag-
netic particles and stool components. Nonetheless, the aptamers
M1 and M6-2 displayed a reasonably good capture efficiency at a
range of 4.88–6.79 log10 input genomic copies of virus. Because of
the similar performance of the M1, M6-2, and the Escudero-Abarca
et al. (2014) aptamers by ELASA and AMC-RT-qPCR, it is possible
that they all bind to a conserved NoV region, but further anal-
ysis would be necessary to support this hypothesis. The limit of
detection of the AMC-RT-qPCR assay was 4.88 log10 input genomic
copies, which corresponded to about 2–3 log10 RT-qPCR amplifiable
units in the input stool sample.

Unlike any of the previous reports of aptamers generated against
NoV, this paper is the first report of aptamers developed with a
biotin label during the selection process. Label modifications made
after the development of aptamers have the potential to alter the
three-dimensional structure resulting in reduced aptamer binding
affinity (Jiang et al., 2004; Wang et al., 2005); thus selection using a
functional biotin label allows for many downstream diagnostic and
detection applications with less risk of losing aptamer functional-
ity. For example, the colorimetric ELASA assay presented here could
be further optimized and its sensitivity increased with a chemilu-
minescent or fluorescent assay; both of which are compatible for
use with biotinylated ligands and the proper streptavidin/avidin
conjugates (Lewkowich et al., 2001; Yu et al., 2011).

Not only were aptamers M1 and M6-2 able to bind to multi-
ple human NoV VLPs, they also bound to stool samples previously
confirmed as positive for human NoV as evaluated by both the
ELASA and AMC assay. It was, however, necessary to purify and
dilute the stool specimens in order to achieve reliable detection
signals, suggesting that matrix-associated interference with lig-
and binding occurred when samples were too “dirty.” This may
be due to a degree of non-specific binding and/or association of
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the aptamers with the extracted stool matrix. This phenomenon
has been observed in similar types of assays done by other investi-
gators for both aptamers (Escudero-Abarca et al., 2014) and other
ligands (Burton-MacLeod et al., 2004; Huang et al., 2014; Li et al.,
2012). Interestingly, the dilution of the chloroform-extracted stool
to about 0.2% original stool content for GII.4 New Orleans used here
is similar to the optimal 1% stool dilution reported by Huang et al.
(2014) when detecting NoV GII.4 in ELISA using phages displaying
single-chain antibodies. When it comes to AMC, non-specific bind-
ing to the paramagnetic beads is commonly observed, as has been
reported by others for bacteria (Rijpens et al., 1999; Tomoyasu,
1998) and NoV (Escudero-Abarca et al., 2014; Gilpatrick et al.,
2000). All told, regardless of the ligand or assay design, non-specific
binding virtually always impacts analytical sensitivity and this
remains a recalcitrant issue for development of rapid, reliable, and
sensitive human NoV detection methods.

The human NoV capsid protein is under constant selective pres-
sure, especially GII.4 strains, and strain emergence occurs every
few years (Bull et al., 2010; Debbink et al., 2012). With respect to
development of advanced detection and vaccination strategies that
can cover emerging strains, it is important to have a readily avail-
able target for product development purposes. A functional human
NoV P domain can be easily cloned, expressed and purified in E. coli
with only capsid sequence information needed, thus resulting in
the production of high concentrations of protein at low cost with
relative ease. In short, the method described here can provide a
cost-effective, rapid, and easily implemented means to create large
quantities of ligands with high affinity to emerging human NoV
strains. As rapid, microfluidic SELEX processes emerge, this may
become an even simpler and faster means by which to select lig-
ands with binding specificity to protein targets (Huang et al., 2010;
Lou et al., 2009).

5. Conclusion

In summary, we isolated and characterized ssDNA aptamers
with binding specificity to a broad range of human NoV VLPs
and outbreak strains using an E. coli-expressed viral capsid pro-
tein, and demonstrated that they could be used as capture ligands
in both ELISA-type and aptamer-mediated magnetic capture-RT-
qPCR assays. The aptamers reported here are among the broadest
reacting ligands to human NoV identified to date (Escudero-Abarca
et al., 2014; Hardy et al., 1996; Huang et al., 2014; Kitamoto
et al., 2002; Kou et al., 2014; Li et al., 2010; Shiota et al., 2007;
Yoda et al., 2003, 2001). With further development, the aptamers
may be useful in novel detection platforms such as biosensors
(reviewed in Torres-Chavolla and Alocilja 2009). For example, the
flexibility of chemical modification and stability of the presented
aptamers makes them ideal candidates for use in combination
with previously reported broadly reactive aptamers for detection of
human NoV in complex samples using Luminex xMAP technology
(Bergervoet et al., 2008; Porschewski et al., 2006). The presented
aptamers may also have utility in antiviral or therapeutic applica-
tions (Jeon et al., 2004; Khati et al., 2003; Yoon et al., 2010). This is
the first report to demonstrate that broadly reactive aptamers bind-
ing human NoV can be easily and cost-effectively produced using
SELEX directed against P domain of these viruses.
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