20 research outputs found

    Secure Biomedical Document Protection Framework to Ensure Privacy Through Blockchain

    Get PDF
    In the recent health care era, biomedical documents play a crucial role, and they contain much evidence-based documentation associated with many stakeholders data. Protecting those confidential research documents is more difficult and effective, and a significant process in the medical-based research domain. Those bio-documentation related to health care and other relevant community-valued data are suggested by medical professionals and processed. Many traditional security mechanisms such as akteonline and Health Insurance Portability and Accountability Act (HIPAA) are used to protect the biomedical documents as they consider the problem of non-repudiation and data integrity related to the retrieval and storage of documents. Thus, there is a need for a comprehensive framework that improves protection in terms of cost and response time related to biomedical documents. In this research work, blockchain-based biomedical document protection framework (BBDPF) is proposed, which includes blockchain-based biomedical data protection (BBDP) and blockchain-based biomedical data retrieval (BBDR) algorithms. BBDP and BBDR algorithms provide consistency on the data to prevent data modification and interception of confidential data with proper data validation. Both the algorithms have strong cryptographic mechanisms to withstand post-quantum security risks, ensuring the integrity of biomedical document retrieval and non-deny of data retrieval transactions. In the performance analysis, Ethereum blockchain infrastructure is deployed BBDPF and smart contracts using Solidity language. In the performance analysis, request time and searching time are determined based on the number of request to ensure data integrity, non-repudiation, and smart contracts for the proposed hybrid model as it gets increased gradually. A modified prototype is built with a web-based interface to prove the concept and evaluate the proposed framework. The experimental results revealed that the proposed framework renders data integrity, non-repudiation, and support for smart contracts with Query Notary Service, MedRec, MedShare, and Medlock

    2,4,6,8-Tetra­kis(4-chloro­phen­yl)-3,7-diaza­bicyclo­[3.3.1]nonan-9-one O-benzyl­oxime acetone monosolvate

    Get PDF
    In the title compound, C38H31Cl4N3O·C3H6O, the 3,7-diaza-bicycle exists in a chair–boat conformation. The 4-chloro­phenyl groups attached to the chair form are equatorially oriented at an angle of 18.15 (3)° with respect to each other, whereas the 4-chloro­phenyl groups attached to the boat form are oriented at an angle of 32.64 (3)°. In the crystal, mol­ecules are linked by N—H⋯π and C—H⋯O inter­actions

    Synthesis and Characterization of Silver and Gold Nanoparticles Using Aqueous Extract of Seaweed, Turbinaria conoides,

    Get PDF
    Silver and gold nanoparticles were synthesized using an aqueous extract of the seaweed Turbinaria conoides and their antibiofilm activity against marine biofilm forming bacteria is reported here. The UV-Vis spectra showed the characteristics SPR absorption band for Ag NPs at 421 and for Au NPs at 538 nm. Further, the synthesized nanoparticles were characterized using FT-IR, XRD, FESEM, EDX, and HRTEM analysis. Spherical and triangular nanostructures of the Ag and Au nanoparticles were observed between the size ranges of 2–17 nm and 2–19 nm, respectively. The synthesized Ag NPs are efficient in controlling the bacterial biofilm formation; however, Au NPs did not show any remarkable antibiofilm activity. The maximum zone of inhibition was recorded against E. coli (17.6±0.42 mm), followed by Salmonella sp., S. liquefaciens, and A. hydrophila. The macrotube dilution method inferred the MIC (20–40 µL mL−1) and MBC (40–60 µL mL−1) of Ag NPs. The CLSM images clearly showed the weak adherence and disintegrating biofilm formation of marine biofilm bacterial strains treated with Ag NPs. The Artemia cytotoxicity assay recorded the LC50 value of 88.914±5.04 µL mL−1. Thus the present study proved the efficiency of Ag NPs as a potent antimicrofouling agent and became the future perspective for the possible usage in the biofouling related issues in the aquaculture installations and other marine systems

    An optimal multitier resource allocation of cloud RAN in 5G using machine learning

    Get PDF
    The networks are evolving drastically since last few years in order to meetuser requirements. For example, the 5G is offering most of the available spec-trum under one umbrella. In this work, we will address the resource allocationproblem in fifth-generation (5G) networks, to be exact in the Cloud Radio AccessNetworks (C-RANs). The radio access network mechanisms involve multiplenetwork topologies that are isolated based on the spectrum bands and it shouldbe enhanced with numerous access technology in the deployment of 5G net-work. The C-RAN is one of the optimal technique to combine all the availablespectral bands. However, existing C-RAN mechanisms lacks the intelligence per-spective on choosing the spectral bands. Thus, C-RAN mechanism requires anadvanced tool to identify network topology to allocate the network resources forsubstantial traffic volumes. Therefore, there is a need to propose a frameworkthat handles spectral resources based on user requirements and network behav-ior. In this work, we introduced a new C-RAN architecture modified as multitierHeterogeneous Cloud Radio Access Networks in a 5G environment. This archi-tecture handles spectral resources efficiently. Based on the simulation analysis,the proposed multitier H-CRAN architecture with improved control unit innetwork management perspective enables augmented granularity, end-to-endoptimization, and guaranteed quality of service by 15 percentages over theexisting system

    Temporal and Spatial Variations of the Solar Radiation Observed in Singapore

    Get PDF
    Meteorological phenomena, such as fast moving clouds, cause rapid changes in the terrestrial direct beam radiation. This introduces transients in both the temporal and spatial measurements of global horizontal radiation. These transients in radiation affect the performance of solar energy conversion systems (PV, CPV systems and solar thermal applications) and cause their output power to vary widely. Thus, to properly understand the dynamic fluctuations observed in the output energies of large solar farms and PV arrays, it becomes necessary to perform a high-resolution temporal and spatial measurement of solar radiation. It turns out that performing such high-resolution measurements is often cost-prohibitive. Studies were conducted to understand and quantify the temporal and the spatial variations of direct beam, diffused and global horizontal radiation. These studies were based on the radiation data collected at the Nanyang Technological University, Singapore at a time interval of 1 s. It was inferred from these studies that the temporal variations in the instantaneous diffuse radiation are minimum and there was little spatial variations seen across distances of 500 m. The transients observed in global horizontal radiation are predominantly restricted to the changes occurring in the direct beam component of the solar radiation. Based on these inferences, a simple and costeffective method is proposed that would permit accurate large scale localised high-resolution measurements of individual components of the solar radiation.NRF (Natl Research Foundation, S’pore)Published versio

    Understanding the salient features related to resource management in broadband wireless networks

    No full text
    In recent days, Wireless technologies are improving drastically based on the number of users, leading to network traffic and reliability in the data services. Here the resource plays a significant role, and it needs various approaches to manage and monitor those resource mesh networks. As the network is concerned, different structure/topology is applied as the framework, and mesh topology is used in recent networking technologies. The various scheduling approaches are discussed based on the vast resource in the network. Then different characteristics are discussed related to radio channels based on wireless broadband networks and to provide effective network traffic management and Quality of Service. As advanced networks is concern, network coding approaches are considered while the data are exchanged between the nodes in the network. Finally, the various parameters are discussed related to resource and channel management to provide effective communication in the network

    ARCHERR: Runtime environment driven program safety

    No full text
    Abstract. Parameters of a program’s runtime environment such as the machine architecture and operating system largely determine whether a vulnerability can be exploited. For example, the machine word size is an important factor in an integer overflow attack and likewise the memory layout of a process in a buffer or heap overflow attack. In this paper, we present an analysis of the effects of a runtime environment on a language’s data types. Based on this analysis, we have developed Archerr, an automated one-pass source-to-source transformer that derives appropriate architecture dependent runtime safety error checks and inserts them in C source programs. Our approach achieves comprehensive vulnerability coverage against a wide array of program-level exploits including integer overflows/underflows. We demonstrate the efficacy of our technique on versions of C programs with known vulnerabilities such as Sendmail. We have benchmarked our technique and the results show that it is in general less expensive than other well-known runtime techniques, and at the same time requires no extensions to the C programming language. Additional benefits include the ability to gracefully handle arbitrary pointer usage, aliasing, and typecasting.

    Effective Resource Allocation Technique to Improve QoS in 5G Wireless Network

    No full text
    A 5G wireless network requires an efficient approach to effectively manage and segment the resource. A Centralized Radio Access Network (CRAN) is used to handle complex distributed networks. Specific to network infrastructure, multicast communication is considered in the performance of data storage and information-based network connectivity. This paper proposes a modified Resource Allocation (RA) scheme for effectively handling the RA problem using a learning-based Resource Segmentation (RS) technique. It uses a modified Random Forest Algorithm (RFA) with Signal Interference and Noise Ratio (SINR) and position coordinates to obtain the position coordinates of end-users. Further, it predicts Modulation and Coding Schemes (MCS) for establishing a connection between the end-user device and the Remote Radio Head (RRH). The proposed algorithm depends on the accuracy of positional coordinates for the correctness of the input parameters, such as SINR, based on the position and orientation of the antenna. The simulation analysis renders the efficiency of the proposed technique in terms of throughput and energy efficiency

    Effective Resource Allocation Technique to Improve QoS in 5G Wireless Network

    No full text
    A 5G wireless network requires an efficient approach to effectively manage and segment the resource. A Centralized Radio Access Network (CRAN) is used to handle complex distributed networks. Specific to network infrastructure, multicast communication is considered in the performance of data storage and information-based network connectivity. This paper proposes a modified Resource Allocation (RA) scheme for effectively handling the RA problem using a learning-based Resource Segmentation (RS) technique. It uses a modified Random Forest Algorithm (RFA) with Signal Interference and Noise Ratio (SINR) and position coordinates to obtain the position coordinates of end-users. Further, it predicts Modulation and Coding Schemes (MCS) for establishing a connection between the end-user device and the Remote Radio Head (RRH). The proposed algorithm depends on the accuracy of positional coordinates for the correctness of the input parameters, such as SINR, based on the position and orientation of the antenna. The simulation analysis renders the efficiency of the proposed technique in terms of throughput and energy efficiency

    Cyclization of enediyne radical cations through chemical, photochemical, and electrochemical oxidation: The role of state symmetry

    No full text
    ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a �Full Text� option. The original article is trackable via the �References� option
    corecore