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An Optimal Multi-tier Resource Allocation of Cloud RAN in 5G 

using Machine Learning 

Ali Kashif Bashir1*, Rajakumar Arul2*, Shakila Basheer, Gunasekaran Raja, 

Ramkumar Jayaraman, Nawab Muhammad Faseeh Qureshi  

Abstract – The networks are evolving drastically since last few years in order to meet user 

requirements. For example, the 5G is offering most of the available spectrum under one umbrella. In 

this work, we will address the resource allocation problem in 5G networks, to be exact in the Cloud 

Radio Access Networks (C-RAN). The Radio Access Network (RAN) mechanisms involve multiple 

network topologies that are isolated based on the spectrum bands and it should be enhanced with 

numerous access technology in the deployment of 5G network. C-RAN is one of the optimal technique 

to combine all the available spectral bands. However, existing C-RAN mechanisms lacks the 

intelligence perspective on choosing the spectral bands. Thus, C-RAN mechanism requires an advanced 

tool to identify network topology to allocate the network resources for substantial traffic volumes. 

Therefore, there is a need to propose a framework that handles spectral resources based on user 

requirements and network behavior. In this work, we introduced a new C-RAN architecture modified 

as multi-tier H-CRAN in a 5G environment. This architecture handles spectral resources efficiently. 

Based on the simulation analysis, the proposed multi-tier H-CRAN architecture with improved CU in 

network management perspective enables augmented granularity, end-to-end optimization, and 

guaranteed Quality of Service (QoS) by 15 percentages over the existing system. 

Keywords – Radio access network, Quality of Service, Baseband Unit, Quality of experience.   

I. Introduction  

 In the midst of this data revolution era, the evolutions in the network generations should be 

steered largely to hold up faster data-oriented services that can be fulfilled in 5G. The forthcoming 

network is planned to evolve based on the user expectation and demands which in turn forms the 

basement for the 5G network goals. Some of the predominant targets of 5G are low latency, high 

bandwidth utilization and interoperability. To achieve the significant goals of 5G, efficient network 

management and compatible network architecture is required. The 5G network incorporates various 

emerging technologies like Software Defined Networking (SDN), Network Function Virtualization 

(NFV) and Mobile Edge Computing (MEC) [1] which were proposed by the main working group of 

5G networks like NGMN and 3GPP. The 5G consortium has planned to utilize the available spectrum 

of all the communication and data sharing bands of the licensed spectrum such as LTE, UMTS and 

unlicensed spectrum like WiFi [2]. The advanced antennas with Multiple Input and Multiple Output 

(MIMO) technologies can be adopted in the evolving 5G to provide higher data rate [3] and [4]. The 

colossal requirements of future 5G networks cannot be accomplished by the existing Radio Access 

Networks (RANs), wherein the Base Band Units (BBUs) and Radio Units (RUs) are consolidated [2]. 

Meanwhile, the cloud-enabled services in 5G ecosystem cater heterogeneous communication 

framework utilizing advanced virtualization techniques. The network virtualization stimulates multi-

service and multi-tenancy for efficient network operations and service provisions which in turn offers 

new-fangled service-oriented and edge-cloud 5G architectures with enhanced Quality of Experience 

(QoE) [5]. Thus, the current RAN architectures need to be further extended with various virtualization 

techniques to develop Cloud RAN (C-RAN). C-RANs abutments the correlation of Access Points (APs) 

to the pool of BBU via a troop of transport links in the Control Unit (CU) [6] which conquers the 



limitations in the traditional RAN [7]. However, C-RAN requires an intelligent technique to recognize 

the topology of the network in the mobility stage and to locate the resources, as the vast traffic volume 

created by the sampled radio signals are directly transported to the CU [8]. 

The next-generation networks are expected to learn consistently based on the varied user behavior and 

spectral stability that depends on both the user’s environment and network behavior [9]. Thereby 

seamless service can be ensured for the needy as per the requirement by predicting the most 

advantageous network that can render service [10]. The chosen optimal network will offer seamless 

service, with highly sophisticated learning and decision-making through machine learning techniques. 

Machine learning is the most robust artificial intelligence domain which comprises of assured 

techniques for improving the operation and management of networks and engineering applications in 

the future cellular networks. The machine learning algorithms employed for mobile networks can 

endeavor plentiful opportunities to solve advanced threats and enhance connectivity [11]. Hence, the 

machine learning aided C-RAN architectures are expected to perform as an intelligent radio propagation 

medium which can automatically assess the available spectrum and can regulate the power to be 

transmitted in the interest of energy conservation. It is believed that an innovative C-RAN with machine 

learning technique forms a new design prototype in the 5G network architecture which will most 

probably introduce considerable modifications in the air interface and the tensile network management. 

Thus, CRAN invites a fruitful solution that solves the issue of interoperability by utilizing various 

spectrum bands by learning the dynamic changes in the networking paradigm. In this article, we 

proposed a Multi-tier H-CRAN in 5G by adopting the machine learning techniques to address the 

current limitations of huge traffic in the BBU pool of existing architecture. The proposed architecture 

is also improved to facilitate augmented granularity, end-to-end optimization, and guaranteed Quality 

of Service (QoS). This article is organized as, section 2 discusses the literature on the recent research 

solution that contributes to the domain of 5G and machine learning. The feasibility in the physical 

Deployment of RAN in heterogeneous networks is explained in section 3. In section 4, proposed Multi-

tier H-CRAN architecture with learning tier is briefed. The performance of the proposed system is 

analyzed in section 5 under various assumptions and 5G scenarios. Finally, section 6 concludes the 

article with the inference of analysis made on the proposed system. 

II. Related Works 

 The 5G wireless network is evolving to satisfy the end user requirements such as seamless 

connectivity even with high mobility, low latency and interoperable connectivity. The mobile 

communication working groups and consortiums focus on providing new spectrum bands, on improving 

spectral efficiency and throughput when considering the business models related to coverage area and 

reliable broadband access [12]. To meet the user requirements, RAN is redesigned to scale the 

parameters such as throughput, many devices and connections concerning User Plane (UP) and Control 

Plane (CP). The evolving 5G RAN architecture supports mechanism that relates traffic, to fulfill Quality 

of Service (QoS) and to control D2D connectivity [13]. RAN technology also assists in reducing traffic 

services and enables network slicing [14]. However, there is a possibility for RAN to be designed up 

with heterogeneous networks like WiFi and LTE small cells, i.e. HetNets [15]. 

By the recent advancements in the cloud computing paradigm, the integration of Cloud technology with 

RAN named as C-RAN is believed to be a productive solution to solve the heterogenous interoperable 

problems. C-RAN is the most promising design for the mobile network system to provide scalable and 

smooth traffic transmission. C-RAN integrated with HetNets has achieved flexible and reconfigurable 

dense deployment of small cells. C-RAN holds the potential in giving effective communication and 



information exchange among the terminals. When C-RAN is modeled with the assistance of SDN, it 

gives a space to configure and manage the dense small cells deployment [16] and [17]. To enhance the 

QoS in C-RAN, BBU pool is relocated into BBU and Remote Radio Head (RRH) where BBU is enabled 

with the central processing unit to provide network coordination and management. BBU helps in 

reducing the traffic when deploying the small cells, i.e. HetNets which contains thousands of small 

cells. In BBU, there is a possibility of several other challenges like effective radio resource 

management, spectrum, and energy efficient network to enable QoE, resource management in small 

cells and multi-hop networks.   

By considering cooperative radio resource management, a modified C-RAN framework has been 

proposed to provide an improved indulgent of resource allocation. It also enables flexible resource 

management with improved QoS parameters such as throughput and fairness [18]. The modified  

C-RAN framework allows flexible resource management, i.e. the amount of resource used for the end 

users is made dynamic. Several issues came into existence when C-RAN is combined with HetNets 

such as coordinated multipoint transmission and reception, resource management in self-organized 

networks and improved spectrum utilization with energy estimation in cellular systems. In C-RAN, the 

transmission demand between BBU and RRH are considered for the differentiation of services and RRH 

demand in the transmission links, i.e. backhaul is improved by balancing the workload which is labeled 

as multipoint transmission [19]. In C-RAN, BBU and Radio Access Units (RAUs) are isolated to 

provide centralized processing that reduces operational expenses. While mapping RRH and RAUs in 

heterogeneous networks, the hardness of configuration and energy efficiency are the prime parameters 

to be considered [20]. C-RAN along with Orthogonal Frequency Division Multiple Access (OFDMA) 

technique, helps to map BBU and RAU for providing reconfigurable backhaul transmission and 

effective energy utilization. Efficient pre-coding scheme [21] has been designed for the environment 

like C-RAN with full channel matrix using beamforming i.e. zero-forcing to reduce energy consumption 

and computational complexity in cooperative transmission. Centralized processing of thousands of 

small cells helps to perform multiple cell joint scheduling, but interference problem and frequency reuse 

play a significant role in the dense scenarios [22]. 

Next generation networks are often planned for the improved data rate which is used for many essential 

applications like sensing, resource management, etc. Challenges faced by radio technology has to 

provide creative learning and decision making platform for efficient frequency planning. Based on radio 

frequency spectrum, a heterogeneous network meets spectral inefficiency, interference transmission 

and power inefficiency concerning QoS [23] and [24]. HetNets faces the problem of inefficient radio 

resource management and optimization for the user's satisfaction [25]. To overcome the various network 

degradation problems, artificial intelligence techniques such as machine learning, fuzzy neural 

networks, etc. play an important role to provide practical solutions [26]. When artificial intelligence is 

deployed on the C-RAN by integrating HetNets, Base Stations (BS) uses dedicated backhaul to provide 

guaranteed backhaul and small cells deployment offers seamless connectivity to offload the data in 

traffic. If C-RAN is automated or made intelligent, then RRH in backhaul connection of RAN can be 

combined with the BBU pool to create a centralized processing unit [27]. 

Due to the tremendous traffic generated by mobile users, the future mobile network deployment is going 

to be extremely complex. The spectrum utilization in the densely populated network is a challenging 

task and if machine learning [28] is used as an optimization tool to optimize the C-RAN, the resource 

allocation scheme will be enabled to downlink H-CRAN [29]. H-CRAN aims the reduction of an 

interference problem to maximize the energy efficiency and to guarantee the QoS between RRH and all 

UE’s present in the network. In this paper, we propose a multi-tier H-CRAN architecture, that can 

provide seamless connectivity by monitoring the network conditions and user behavior based on the 



behavioral pattern, to avail the required technology in the future. Also, the proposed multi-tier H-CRAN 

considers the problem of interference to get optimized resource allocation further to improve the QoS. 

  

III. Deployment of RAN in HetNets 
 

The key idea of our proposal is to deploy RAN in the scenario of HetNets. In order to buckle 

with the scope of small cells prosperity, Cloud Radio Access Networks (C-RANs) with minimized 

Captial Expenditure (CAPEX) and Operating Expenditure (OPEX) is proposed. C-RANs have 

independent Baseband Units (BBUs) and independent RAUs. These standalone units are migrated from 

centralized processing and are placed in the cloud. The backhaul that connects the BBU and RAU is 

said to be the principal component of C-RAN. For efficient network management, the 5G leverages 

SDN, NFV and Mobile Edge Computing (MEC) principles. The large requirement of future 5G 

networks cannot be accomplished by the existing Radio Access Networks (RANs), wherein the 

baseband units (BBUs) and radio units (RUs) are consolidated. Cloud RANs abutments the correlation 

of Access Points (APs) to the pool of BBU via a troop of transport links in the Control Unit (CU) which 

conquer the limitations in the traditional RAN [6]. However, C-RAN requires an intelligent technique 

to recognize the topology of the network in the mobility stage and to locate the resources, as the vast 

traffic volume created by the sampled radio signals are directly transported to the CU. Initially, machine 

communication services are categorized as massive Machine-Type Communications (mMTC), 

enhanced Mobile BroadBand (eMBB) and ultra-reliable, Low-Latency Communications (UR-LLC) 

services [30] which have very different performance requirements and traffic profiles. Thus the 

litheness and extensibility introduced by this new C-RAN architecture grants to deviate the vision from 

the generic C-RAN to Multi-layer C-RAN. In the multi-layer C-RAN, UE assignments should be dealt 

with adequate dormancy to solve the UE latency and energy utilization problems in RRHs. 

 

Thus, we propose a novel architecture involving multi-layer of C-RAN network as multi-tier H-CRAN. 

The proposed architecture is also equipped with unique control and innovative management schemes 

to facilitate augmented granularity, end-to-end optimization, and guaranteed Quality of Service (QoS). 

To support these new use cases, in this work, we inherent machine learning paradigm with CRAN 

deployment for high scalability and flexibility. So, the next generation architecture extends the cloud 

RAN technology to ultra-dense networks that incorporate macro, micro and small cells in diverse 

spectrum bands, i.e. HetNets.  

 

3.1.    Generalization of HetNets:   

HetNets incorporates a bulk quantity of compactly deployed small cells such as femtocells, 

picocells, Relay Nodes (RN), LTE and WiFi Access Points (APs) [31] and [32]. These small cells can 

serve both as indoor and outdoor UEs. These are deployed in the densely colonized region to reconcile 

the immense traffic cravings. Picocells maneuver on licensed bands and use either optical fiber or 

microwave interface as backhaul to get connected with the core network. They are set up by the cellular 

speculator, either in an organized or in an unorganized way, at numerous traffic hot-spots. Femtocells 

are habitually functioning on licensed bands and exploit the broadband Internet linkage as backhaul. 

The core network is then linked employing either extant Digital Subscriber Line (DSL) or cable modem 

done with the IP network. They are incorporated by human beings predominantly on the way to deliver 

interior coverage. Relay Node (RN) is the stretched version of its benefactor evolved Node B (eNB), it 

is linked with the benefactor eNB through the mediator Uu amalgamator in addition to the radio link. 

Backhaul is capable of exploits either clonal frequency band (Inband) as being pre-owned in air 



mediator or is capable of exploiting peculiar band (Outband). UE is coupled with RN through the Uu 

mediator. When a UE does not become familiar with the case it is associated to relay or network then 

the relay will be translucent, or else when the UE is familiar with the case it is associated to network or 

relay, the relay will be non-translucent. Wi-Fi APs are small cells habitually functioning on unlicensed 

ISM bands with the frequency between 2.4 GHz and 5 GHz. WiFi APs are incorporated either by a 

manipulator or human beings to afford a cramped coverage zone and can be positioned indiscriminately 

in the interior of every cell, which has the capacity of transmitting power varies from 100mWto 200mW. 

It makes use of the broadband Internet connection as backhaul. LTE [5] small cells are endorsed because 

of organization litheness, curtailed capital, and operational costs, in addition to the diminished energy 

regime. [6] As a result of their supplementary compressed arrangement feature, the LTE network is 

alienated into two parts: the LTE part handles radio access expertise, while the Evolved Packet Core 

(EPC) handles the expertise allied to a core network. A UE fixes to an eNodeB by means of a radio 

mediator. The eNodeB executes the administration of radio resource tasks such as allotting radio 

resources in addition to the administration of inter-cell interference. 

The general network architecture differentiating HetNet, C-RAN and H-CRAN is depicted in Fig. 1. 

By scheduling transmissions centrally, C-RAN can improve cell edge performance by the addition of 

reducing the inter-sit interference and can serve the users across different radio access bearers. With 

inter-site connectivity and de-coupled uplink and downlink, cloud RAN introduces the concept of the 

“no-edge” network to ensure consistent improved user experience in high-density networks. The central 

controller of the C-RAN can be designed using “cloud-native” software to run-on general-purpose telco 

cloud infrastructure. The placement of the controller corresponds to an edge data centre 

 

 

Fig. 1.  Network Architecture  

 

facility that is capable of running Multi-access Edge Computing (MEC) services. One opportunity is to 

consider how radio access and cloud based MEC services can be integrated. For instance, to enable 

developers and content providers to optimize their service, according to the desired or available radio 

bandwidth. It is expected to be useful for ultra-low-latency and mission-critical services in 5G and it is 

being formalized with the CU and DU functional split. On the DU side, for example, the use of massive 

MIMO associated with beam-tracking and beam-switching techniques require highly accurate time 



estimation to support mobility, which points toward distributed real-time radio function as optimal. 

Artificial intelligence techniques are believed to be an optimization tool to optimize the C-RAN in the 

network. 

3.2. Automated, Intelligent OA&M: 

     A critical capability of the next-generation cloud-RAN architecture is the ability to accurately 

understand the network status in real time across the coverage area [33]. Operations, Administration 

and Management (OA and M) automation is vital because of the significant operational cost dedicated 

to ongoing RAN optimization. Coordinated scheduling can radically improve deployment flexibility 

and performance. It also enables operators to: 

• Automate continuous radio optimization 

• Accelerate network expansion and deployment 

• Adapt to changing user behavior 

By integrating cloud based network in RAN the control functions in the network are analyzed to quicken 

network expansion and implementation, thus in overall, it improves QoS and QoE.  

3.3. Edge Cloud Deployment & Integration: 

Cloud RAN offers an opportunity to integrate radio access with the rest of the telco cloud-

enabled network –for example, using ME [34]. In this model, the application logic or content is hosted 

on cloud infrastructure at the same edge data centre facility as the centralized control functions. It is 

particularly useful where an application is delay-sensitive. When the service is not time-critical, it may 

be more efficient to process data centrally. For the commercial network deployment, dual connectivity 

plays a vital role by introducing LTE and 5G RAN network.    

3.4. 5G NR with Dual-Connectivity to LTE: 

A non-standalone mode is a way to add 5G New Radio into an LTE network [35]and [36]. The 

LTE RAN is used as a Master evolved NodeB (MeNB) and provides control in signalling to establish 

and manage the connection with the devices. It is likely to be the way 5G is introduced into commercial 

networks by the network operators. By analysing the above terminologies and technologies, we found 

the challenges as follows,   

1.    In Multi-layer CRAN, UE assignment should be dealt with adequate dormancy. 

2.   In H-CRANs, there are many challenges ahead, including optimal resource allocation over the 

constrained front haul, energy harvesting, backward compatible standards development, and so 

on.  

3.    To our best knowledge, no existing work has investigated the benefits of cross-tier and intra-tier 

cooperation under the capacity limitation in a data frame. The challenges come from how to utilize 

radio resource efficiently and to enhance cooperative gain conforming to the constraints of 

capacity in H-CRAN 

4.    The frequency resources of H-CRAN is distributed among the RRHs and HPNs which makes the 

optimization to serious inter-tier interference issues and non-convexity issue. 



5.    In complicated heterogeneous networks as we see in the 5G deployment, where many RRHs are 

multi-hop connected to the BBU pool, a significant problem that must be solved is front haul 

resource management, especially for front haul resources shared by hotspot RRHs. 

6.    The concern now is how operators can be best to make use of virtualization technologies in RANs 

while at the same time building cost, spectrum and energy efficient networks that offer a seamless 

user experience. 

 

Based on these pieces of literature in section 3, we have reconstructed the existing C-RAN architecture 

to figurate the new proposed structure based on the integration of multi-tier component such as physical, 

cluster and machine learning strategies as in Fig. 2. 

 

 

 

Fig. 2. Proposed Vs Actual network system 

For the integration of machine learning with C-RAN, HetNets such as picocells and small cells, etc. 

requires a self-configured / optimized network. To build such a framework, we need to solve the 

problem of resource allocation and interference coordination problem in either uplink/downlink 

networks. In this paper, we have addressed the resource allocation problems that exist when CRAN is 

operated with heterogeneous networks through machine learning strategies. In this paper, we have 

applied Q-Value approximation algorithm, a learning strategy is integrated with resource allocation 

process to provide effective decision based on the calculation on QoS metric. Also, the selection of 

active RRH cell to provide allocation of resource in the network is represented in algorithm 2 follows 

a modelled graph coloring methodology. The challenges that will be faced in the considered scenario  

is diagrammatically represented in Fig. 3.     



 

Fig. 3. Multi-Tier C-RAN HetNets Structure 

IV. Co-ordinated UE Multi-tier C-RAN  

 In this article, we propose Co-ordinated UE Multi-tier H-CRAN, that is deployed in the CRAN 

technology for the selection of desirable network based on user behavior which is represented as 

Algorithm 1. The Algorithm 1 takes the required bandwidth and data rate as the input to provide an 

accurate selection of network technology. In fig. 4, the UE assignments should be dealt with Multi-

layer H-CRAN with adequate dormancy. The total number of UEs is to be increased in the optimization 

issue of RRH cell, for the sufficient dormancy in each cell. The Co-ordinated UE algorithm, 

supportively communicates and computes the resource allocation task of each RRH cell which leads to 

minimized UE assignment dormancy and decreased the cost of energy. A distributed way of cell 

colouring based resource allotment methodology is followed by RA to facilitate all RRH cell for 

distributed resource allotments which is completed through algorithm 2. In algorithm 2, one colour is 

assigned to 1 active cell and repeated to all the cells in the set of cells. In the next repetition, it is moved 

to the next colour in the set of cells to compute the utility of the network and QoS metric. Algorithm 2 

helps to assign colour next to next until no resource allocation in the network is possible. Along with 

the resource allocation, we have adapted learning strategy, i.e. approximation Q-value learning 

algorithm [26] to provide resource allocation effectively to improve QoS to the users in the network. 

Finally, the resource allocation of every RRH cell is computed. In this Co-ordinated UE system, we 

have discussed two cases such as interference and non-interference coordination.        

 

 

 

 

 

 

 



    Algorithm 1. Technology Selection 

    Input: Required_Bandwidth, Required_Datarate 

    Output: Technology 

1. Initiate Data_request(Required_Datarate, 

Required_Bandwidth, Total_Size_Data) 

2. Begin For Data_request = 1 to n 

3.      Allocate_Technology(Required_Bandwidth); 

4. End For 

5. Switch_technology(Required_Datarate) 

6.    { 

7.         Case 1: High_Datarate+High_Mobile 

8.                      WiFi+LTE 

9.         Case 2: High_Datarate+Static_Mobility 

10.                      WiFi+SmallCell 

11.         Case 3: Medium_Datarate+Low_Mobility 

12.                        SmallCell 

13.           default: LTE-A 

14.      } 

    15.   Stop Data_request; 

 

In the BBU pool of H-CRAN, the frequency resources are distributed among many RRHs and a single 

HPN. For a ranted segment of frequency resources and time slot, the RRH rosters only a single UE. 

Consider the following Gaussian Interference Channel, in which let the power transmission of HPN is 

said to be PH. Node A and B are communicating with each other to access different frequency resources 

F to C and D at the edge of the cell by enabling the cell-edge concept in our proposed work to avoid 

interference. A and B will receive information by the respective transmitter C and D nodes.  

 

F = f1, f2, …. F3 

For the UE of ith RRH and uth RRH, 

𝑆𝐼𝑁𝑅𝑖,𝑢 =  
𝑡𝑝𝑖𝑐𝑔𝑖𝑖

∑ 𝑡𝑝ℎ𝑐𝑔𝑖ℎ+ℎ≠𝑖 𝑇𝑃𝐻𝑃𝑁𝑐𝑔𝑖
𝐻𝑃𝑁+𝑑𝑖

2 +
𝑡𝑝𝑢𝑐𝑔𝑢𝑢

∑ 𝑡𝑝𝑣𝑐𝑔𝑢𝑣+𝑣≠𝑢 𝑇𝑃𝐻𝑃𝑁𝑐𝑔𝑢
𝐻𝑃𝑁+𝑑𝑢

2     (1) 

Where 𝑡𝑝𝑖represents the power transmission of the ith RRH, 𝑐𝑔𝑖ℎ  represents the hike of the carrier 

among the ith RRH and the UE of the hth RRH. 𝑇𝑃𝐻𝑃𝑁𝑐𝑔𝑖
𝐻𝑃𝑁and 𝑇𝑃𝐻𝑃𝑁𝑐𝑔𝑢

𝐻𝑃𝑁 stands for the inter-tier 

interference where 𝑇𝑃𝐻𝑃𝑁 represents the power transmission of the HPN and 𝑐𝑔𝑖
𝐻𝑃𝑁 in (1). Also 𝑐𝑔𝑢

𝐻𝑃𝑁 

stands for instruction about the state of the carrier among the UE of the ith and uth RRH and the HPN. 

𝑑𝑖
2 and 𝑑𝑢

2  is the noise power spectral density.  

 

When a transmission selection is applied in each BBU, transmission serves from ith RRH to uth RRH at 

a particular time ‘t’. SINR computation helps ith RRH mapped to uth RRH of a cluster as represented in 

(1) as represented to minimize the interference based on SNR. 

 

A positive matrix  𝑊𝑀 and 𝑊𝐹 is specified by the candidates: 

 

C =  β . W. log2(1 +  𝛼 . 𝑆𝑁𝐼𝑅)         (2) 

 

In (2), we have formulated channel capacity which is nothing but the throughput by considering the 

bandwidth (W) and data rate (β) with a signal to noise ratio (SNIR) with the constant (α) with 0.1 to 1 

after calculating the SNIR. 

 



𝑊𝑀 = {
0, 𝑖 = ℎ

𝑐𝑔𝑖ℎ

𝑐𝑔𝑖𝑖
, 𝑖 ≠ ℎ          (3) 

𝑊𝐹 = {
0, 𝑢 = 𝑣

𝑐𝑔𝑢𝑣

𝑐𝑔𝑢𝑢
, 𝑢 ≠ 𝑣          (4) 

Where, WM and WF are the channel vectors derived from inter-tier interference based on the state of 

the carrier to reduce network power. It is obtained using two cases of mapping between ith RRH among 

the carrier and hth RRH of UE and mapping between Uth and Vth RRH and VPN as represented in (3) & 

(4). 

and the vectors for 𝑊𝑀 and  𝑊𝐹 are represented in (5).  

𝑎𝑖 = (
𝑉1

𝑐𝑔11
,

𝑉2

𝑐𝑔22
, … … . .

𝑉𝐼

𝑐𝑔𝐼𝐼
)

𝑇
         (5) 

 

Algorithm 2. Resource allocation in multi-tier H-CRAN 

Input:    Colouring the distributed RRH cell 

Output: Resource allocation for each RRH cells 

 

1. Initialize i = 1, Co = 0, Cn = 1, s = 0; 

2. While (Co > Cn ) && (s < Smax) 

3. Begin  

4.   Co = Cn; 

5. For (i <= {set of cells} 

6. Begin 

7. Label the cells with colours and order the colours 

8. Choose the active cell  

9. For Each active cell has certain pattern [37] 

10. Begin  

11.                  Find the potential assignments of mobile cell to the cell constraints  

12. Compute utilities [38] 

13. Compute the QoS metric i.e. Blocking rate 

14. Then next colour activated in the next active cell 

15. End    

16. QoS gets improved for each loop until threshold exceeds 

17.         End 

18. Cn  = ∑ 𝑪𝒋∀𝒋𝝐𝑪        

19. Increment i + 1 % {Set of cells} 

20. Increment s + 1 

21. End 

22. Return ( 𝛼𝑗 , 𝛽𝑗 ) ∀𝑗 𝐵𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜  𝐶 

 

𝑎𝑢 = (
𝑉1

𝑐𝑔11
,

𝑉2

𝑐𝑔22
, … … . .

𝑉𝑈

𝑐𝑔𝑈𝑈
)

𝑇
         (6) 

Where 𝑉𝐼 = 𝑇𝑃𝐻𝑃𝑁𝑐𝑔𝑖
𝐻𝑃𝑁 + 𝑑𝑖

2 and 𝑉𝑈 = 𝑇𝑃𝐻𝑃𝑁𝑐𝑔𝑢
𝐻𝑃𝑁 + 𝑑𝑢

2  The 𝑆𝐼𝑁𝑅𝑖,𝑢  can be transformed as in  

(7).   

 



𝑆𝐼𝑁𝑅𝑖,𝑢 =  
𝑡𝑝𝑖𝑐𝑔𝑖𝑖

∑ 𝑡𝑝ℎ𝑐𝑔𝑖ℎ+ℎ≠𝑖 𝑉𝐼
+

𝑡𝑝𝑢𝑐𝑔𝑢𝑢

∑ 𝑡𝑝𝑣𝑐𝑔𝑢𝑣+𝑣≠𝑢 𝑉𝑈
       (7) 

All the set of vectors are merged as ai at the time ‘T’. (6) is transformed based on the vectors in au in 

(7). 

Then, recomputing (1) based on the set of vectors obtained from (7) to calculate SNIR of ith and uth 

RRH and HPN among UE which is represented in (8).   

𝑆𝐼𝑁𝑅𝑖,𝑢 =  
𝑡𝑝𝑖

∑ 𝑡𝑝ℎ
𝑐𝑔𝑖ℎ
𝑐𝑔𝑖𝑖

+ℎ≠𝑖
𝑉𝐼

𝑐𝑔𝑖𝑖

+
𝑡𝑝𝑢

∑ 𝑡𝑝𝑣
𝑐𝑔𝑢𝑣
𝑐𝑔𝑢𝑢

+𝑣≠𝑢
𝑉𝑈

𝑐𝑔𝑢𝑢

        

𝑆𝐼𝑁𝑅𝑖,𝑢 =  
𝑡𝑝𝑖

𝑡𝑝𝑖𝑊𝑀+𝑎𝑖
+

𝑡𝑝𝑢

𝑡𝑝𝑢𝑊𝐹+𝑎𝑢
        (8) 

Where 𝑡𝑝𝑖 = (𝑡𝑝1, 𝑡𝑝2, … … . 𝑡𝑝𝑖)𝑇  and 𝑡𝑝𝑢 = (𝑡𝑝1, 𝑡𝑝2, … … . 𝑡𝑝𝑢)𝑇  

 

 

Fig. 4. Multi-Tier C-RAN Architecture 

The proposed work enables cell edge concept by computing SNIR concerning the mapping between the 

ith RRH mapped to uth RRH of a cluster. This SNIR computation assists in reducing the interference 

there by considering two cases of with and without interference strategy to optimize the network 

performance. 

 

 

 

 

 



A. With the strategy of Interference  

 

In this section, we have computed transmission power ‘tp’ based on RRH and HPN among the UE to 

optimize the power of transmission and to minimize the interference between RRH and HPN. 

 

With the strategy of interference, the optimization issue can be dispatched in (9).  

 

max{𝑡𝑝𝑖,𝑡𝑝𝑢} ∑ (𝑤𝑡𝑖 + 𝑤𝑡𝑢) log(1 + 𝑆𝐼𝑁𝑅𝑖,𝑢 )
𝐼,𝑈
𝑖,𝑢=1                   (9) 

Such that, ∑ 𝑡𝑝𝑖 ,𝐼,𝑈
𝑖,𝑢=1 𝑡𝑝𝑢 ≤ 𝑇𝑃𝑚𝑎𝑥          

𝑡𝑝𝑖 , 𝑡𝑝𝑢 ≥ 0            

Where 𝑤𝑡𝑖and 𝑤𝑡𝑢 are the density of any UE and 𝑇𝑃𝑚𝑎𝑥 is the admitted ultimate power of transmission 

for the architecture and 𝑉𝐼 and 𝑉𝑈 in (9) is given as 𝑉𝐼 = 𝑑𝑖
2 and 𝑉𝑈 = 𝑑𝑢

2 . Now, the problem can be 

transformed in (10): 

 

max{𝑡𝑝𝑖,𝑡𝑝𝑢} ∏ [(
∑ 𝑡𝑝ℎ𝑐𝑔𝑖ℎ+𝑉𝐼ℎ≠𝑖

∑ 𝑡𝑝ℎ𝑐𝑔𝑖ℎ+𝑉𝐼
ℎ
𝑖=1

)
𝑤𝑡𝑖

+ (
∑ 𝑡𝑝𝑣𝑐𝑔𝑢𝑣+𝑉𝑈𝑣≠𝑢

∑ 𝑡𝑝𝑣𝑐𝑔𝑢𝑣+𝑉𝑈
𝑣
𝑢=1

)
𝑤𝑡𝑢

]𝐼,𝑈
𝑖,𝑢=1       (10) 

Such that, ∑ 𝑡𝑝𝑖 ,𝐼,𝑈
𝑖,𝑢=1 𝑡𝑝𝑢 ≤ 𝑇𝑃𝑚𝑎𝑥          

𝑡𝑝𝑖 , 𝑡𝑝𝑢 ≥ 0            

 

B. The strategy without Interference 

 

In the strategy without interference category, it is recognized that, there is possible for interference in 

between HPN and RRHs. Hence it is modelled as:  

 

𝑚𝑎𝑥 ∑ (𝑤𝑡𝑖 + 𝑤𝑡𝑢) log(1 + 𝑆𝐼𝑁𝑅𝑖,𝑢 )
𝐼,𝑈
𝑖,𝑢=1        (11) 

Such that, ∑ 𝑡𝑝𝑖 ,𝐼,𝑈
𝑖,𝑢=1 𝑡𝑝𝑢 ≤ 𝑇𝑃𝑚𝑎𝑥          

∑ 𝑐𝑔𝑖
𝐴𝑡𝑝𝑖

𝐼
𝑖=1 ≤ 𝜇1          (12) 

∑ 𝑐𝑔𝑢
𝐴𝑈

𝑢=1 𝑡𝑝𝑢 ≤ 𝜇2          (13) 

𝑐𝑔𝑖
𝐴, 𝑐𝑔𝑢

𝐴  ≥ 0             

Where, 𝑐𝑔𝑖
𝐴 , 𝑐𝑔𝑢

𝐴  stands for the instruction about the state of carrier among the ith and uth RRH and the 

UE of the HPN. It is considered that the allotted frequency is common with UEs of RRHs. 𝜇1and 𝜇2 is 

the granted ultimate interference from RRHs to UEs of HPN. Through (11), the optimal transmission 

power based on interference between RRH & HPN among the UE can be inferred. By Integrating carrier 

gain and transmission power based on ith RRH cell and uth HPN cell, granted ultimate interference of 

µ1 and µ2 shall be obtained through (12) & (13).  

 

Owing to its non-convexity characteristics, this issue is complicated to figure out. Hence it is required 

to be reconstructed to a different model in (14).  

 

Let 𝜔1 = {1,1, … … 1}𝑁x1
𝑇    and   

𝜔2 =
𝑇𝑃𝑚𝑎𝑥

𝜇1
+

𝑇𝑃𝑚𝑎𝑥

𝜇2
{𝑐𝑔1

𝐴𝑖 + 𝑐𝑔1
𝐴𝑢 , 𝑐𝑔2

𝐴𝑖 + 𝑐𝑔2
𝐴𝑢 , … . . , 𝑐𝑔𝑖

𝐴𝑖 + 𝑐𝑔𝑢
𝐴𝑢}

𝑁x1
    (14) 



The constraints are 

𝜔𝑖,𝑢
𝑇 𝑡𝑝 ≤ 𝑇𝑃𝑚𝑎𝑥  ,  when 𝑖, 𝑢 = 1,2                    (15) 

Let 𝜗𝑖,𝑢
𝑧 ≤ log(1 + 𝑆𝐼𝑁𝑅𝑖,𝑢 ) and     𝜗𝑖,𝑢 = (𝜗1, 𝜗2, … . . 𝜗𝑖)

𝑇
+ (𝜗1, 𝜗2, … . . 𝜗𝑢)𝑇 

Then the objective function becomes 

∑ (𝑤𝑡𝑖 + 𝑤𝑡𝑢)𝜗𝑖,𝑢
𝑧

𝐼,𝑈

𝑖,𝑢=1

 

𝑒𝜗𝑖,𝑢
𝑧

= 1 + [
𝑡𝑝𝑖

𝑡𝑝𝑖𝑊𝑀+𝑎𝑖
+

𝑡𝑝𝑢

𝑡𝑝𝑢𝑊𝐹+𝑎𝑢
]        (16) 

In matrix form, 

(𝑑𝑖𝑎𝑔(𝑒𝜗𝑖,𝑢
𝑧

) − I)[(𝑡𝑝𝑖𝑊𝑀 + 𝑎𝑖) + (𝑡𝑝𝑢𝑊𝐹 + 𝑎𝑢)] = 𝑡𝑝𝑖(𝑡𝑝𝑢𝑊𝐹 + 𝑎𝑢) + 𝑡𝑝𝑢(𝑡𝑝𝑖𝑊𝑀 + 𝑎𝑖)   (17) 

Diagonal matrix diag( ) with set of vector elements ai along with the transmission power of UE in (17) 

and the diag ( ) is simplified in (17).  

Let 𝐶 = (𝑡𝑝𝑖𝑊𝑀 + 𝑎𝑖) + (𝑡𝑝𝑢𝑊𝐹 + 𝑎𝑢) 

And 

Let 𝑚 = 𝑡𝑝𝑖(𝑡𝑝𝑢𝑊𝐹 + 𝑎𝑢) + 𝑡𝑝𝑢(𝑡𝑝𝑖𝑊𝑀 + 𝑎𝑖) 

It can be easily derived that 

 

(𝑑𝑖𝑎𝑔(𝑒𝜗𝑖,𝑢
𝑧

)𝑐) = 𝑐 + 𝑚         (17) 

Objective function ‘e’ and ‘j’ is calculated based on the addition of transmission power of uth and ith 

RRH and HPN cell among UE represented in (16) and (18). 

The above equation is to multiplied by  

 

𝐽 + (
1

𝑇𝑃𝑚𝑎𝑥
) 𝑎𝑤𝑖,𝑢

𝑇           (18) 

Where 

𝐽 =
𝑡𝑝𝑖

𝑇𝑝𝑖𝑊𝑀 + 𝑎𝑖
+

𝑡𝑝𝑢

𝑇𝑝𝑢𝑊𝐹 + 𝑎𝑢
 

hence the equation becomes: 

 

(𝐽 + (
1

𝑇𝑃𝑚𝑎𝑥
) 𝑎𝑤𝑖,𝑢

𝑇 ) 𝑑𝑖𝑎𝑔(𝑒𝜗𝑖,𝑢
𝑧

)𝑐 = (𝐽 + (
1

𝑇𝑃𝑚𝑎𝑥
) 𝑎𝑤𝑖,𝑢

𝑇 ) 𝑐 + (𝐽 + (
1

𝑇𝑃𝑚𝑎𝑥
) 𝑎𝑤𝑖,𝑢

𝑇 ) 𝑚 

(𝐽 + (
1

𝑇𝑃𝑚𝑎𝑥
) 𝑎𝑤𝑖,𝑢

𝑇 ) 𝑑𝑖𝑎𝑔(𝑒𝜗𝑖,𝑢
𝑧

)𝑐 ≤ (𝐽 + (
1

𝑇𝑃𝑚𝑎𝑥
) 𝑎𝑤𝑖,𝑢

𝑇 ) 𝑐 + 𝑐     (19) 

Based on the integration of ‘J’ objective function along with the diagonal matrix of uth and ith RRH and 

HPN among UE as in (19).   



(𝐽 + (
1

𝑇𝑃𝑚𝑎𝑥
) 𝑎𝑤𝑖,𝑢

𝑇 ) 𝑑𝑖𝑎𝑔(𝑒𝜗𝑖,𝑢
𝑧

)𝑐 = 𝑐 (1 + 𝐽 + (
1

𝑇𝑃𝑚𝑎𝑥
) 𝑎𝑤𝑖,𝑢

𝑇 )     (20) 

Let 𝑄1 = 𝐽 + (
1

𝑇𝑃𝑚𝑎𝑥
) 𝑎𝑤𝑖,𝑢

𝑇  

‘e’ is denoted as the covariance of two difference concave diagonal matrix Q1 & Q2 as represented in 

Eqn. 21.  

Based on (19), again the covariance ‘e’ gets optimized based on ith and uth RRH and HPN cell among 

UE as shown in (20). to calculate the covariance of two difference concave diagonal matrix Q1 & Q2 

as represented in (21) & (22).   

Now (16) is transformed to:  

𝑄1𝑑𝑖𝑎𝑔(𝑒𝜗𝑖,𝑢
𝑧

)𝑐 ≤ 𝑐(1 + 𝑄1)         (21) 

Similarly 

𝑄2𝑑𝑖𝑎𝑔(𝑒𝜗𝑖,𝑢
𝑧

)𝑐 ≤ 𝑐(1 + 𝑄2)         (22) 

Then the problem is transformed in (23).  

 

𝑚𝑎𝑥 ∑ (𝑤𝑡𝑖 + 𝑤𝑡𝑢)𝑒𝜗𝑖,𝑢
𝑧𝐼,𝑈

𝑖,𝑢=1           (23) 

Such that 

𝑄1𝑑𝑖𝑎𝑔(𝑒𝜗𝑖,𝑢
𝑧

)𝑐 ≤ 𝑐(1 + 𝑄1)          

𝑄2𝑑𝑖𝑎𝑔(𝑒𝜗𝑖,𝑢
𝑧

)𝑐 ≤ 𝑐(1 + 𝑄2)          

Objective function formulation based on concave diagonal matrix optimization helps to optimize the 

interference and non-interference coordination with respect to resource allocation in C-RAN network. 

Based on the above two cases namely, interference and non-interference coordination for either 

uplink/downlink helps to optimize the resource allocation and deployment of heterogeneous networks 

such as picocells and small cells, etc., with the integration of machine learning and C-RAN networks. 

Primary objective of the Co-ordinated UE system is to provide resource allocation to RRH cells 

effectively which leads to the QoS improvement to all the users in the network.          

V. Performance Analysis 

In the performance analysis, the Co-ordinated UE system is compared with three other existing 

systems namely HCRAN, EE-HCRAN and, Centralized resource allocation over the problem of energy 

efficiency. Simulation configuration for the performance analysis is represented in table. 1. 

 

 

 

 



  

Table. 1 Simulation Configuration 

Parameters Value 

Modulation Type OFDMA_QPSK_1_2 

Transmission Range 500 m 

Packet Size 1000 bits 

User distribution Uniform 

Total bandwidth 20 MHz 

Number of RRH 100 

RRH maximum transmission power 25 dBm 

Antenna gain for RRH 6 dB 

Number of Resource Blocks 1000 

Traffic Demand 6.4Mbps~200Mbps 

 

In the performance analysis, our Co-ordinated UE is compared with three other existing 

algorithms namely HCRAN, EE-HCRAN, centralized resource allocation. In this analysis, we have 

carried out the problem of energy efficiency.  

A. Analysis of Energy and spectral Efficiency:  

We have evaluated the performance of the Co-ordinated UE system with the existing system 

such as Centralized resource allocation [39] and EE-HCRAN to provide guaranteed QoS concerning 

energy and spectral efficiency. In our Co-ordinated UE system, we have included multi-tier H-CRAN 

architecture with the integration of machine learning which helps to improve the QoS. In the fig. 5, we 

have notified that our Co-ordinated UE system performs more after 400 iterations, i.e. time step in terms 

of energy efficiency which helps to achieve high data rate. The energy efficiency is calculated with 

respect to SINR threshold of data rate _ with T Pmax =25dBm. In the fig. 6, we have analyzed that the 

Co-ordinated UE system is not sufficient compared to the existing systems until the SINR threshold is 

small as there is no more interference. When the limit gets more value, the proposed system gets it 

effectiveness to achieve data rate in terms of energy efficiency. In fig. 7, we have calculated the spectral 

efficiency with the Co-ordinated UE system by accessing the UE with µ1 and µ2 to achieve high spectral 

efficiency. Based on the spectral efficiency, the convergence time is achieved in the analysis.



 

Fig. 5. Energy efficiency with different iterations   

 
        

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Energy efficiency with SINR threshold 

 

As inferred from the fig. 8, we have greater improvement in the power saving with the proposed multi-

tier H-CRAN compared to the existing algorithms. 

 

 
Fig. 7. Spectral efficiency with different iteration  

 



 
Fig. 8. Bandwidth Vs Power Saving 

 

 
Fig. 9. Energy Efficiency Vs Spectral Efficiency 

 

In the fig. 8, we have identified that the power saving is drastically increased by considering the 

variation in the bandwidth but the existing algorithms such as centralized Resource allocation and  

EE-HCRAN has more fluctuation in terms of power saving. As inferred from the fig. 8, we have more 

significant improvement in the power saving with the proposed multi-tier H-CRAN compared to the 

existing algorithms. In the fig. 9, we have analysis the energy efficiency with the spectral efficiency 

and we inferred that the spectral efficiency gets improved for our proposed multi-tier H-CRAN 

compared to the existing algorithms such as, centralized Resource allocation and EE-HCRAN. 

 

B. Analysis of Data Rate with the variation sets in the resource block:  

 

Fig. 10, 11 and 12 evaluated the data rate with respect to Commutative Distribution Function 

(CDF) by accessing the UE of _ based on the resource block where the resource block = 1000. By 

varying the resource block sets, we have analysed that the Co-ordinated UE system gets its efficiency 

based on the above threshold of 2, 0.5 and 4 (Mbps) compared to the existing systems. 

    

 



       Fig. 10. CDF data rate by accessing UE RB1      

     
 

 

 

 

 

 

 

 

 

 

 

 

         Fig. 11. CDF data rate by accessing UE RB2 

 

 

Fig. 12. CDF Data rate by accessing the UE RB3 

 

C. Analysis of throughput with respect to network constraints:  

 

In fig. 13, aggregated throughput is calculated based on the variation in the number of users 

from 0.0084 to 0.012 1/m2. The throughput gets increased as the number of users also gets increased 

for the Co-ordinated UE system compared to the existing systems such as centralized resource 

allocation and EE-HCRAN. 

 



 
 

              Fig. 13. Throughput Vs User density                  Fig. 14. Throughput Vs Network density  

                                                             

Throughput is calculated based on the variation in the number of network from 0.0002 to 0.018 1/m2. 

As the throughput gets equalize for the existing systems when the network density gets increased. The 

Co-ordinated UE system gets improved throughput based on the increase in the number of network 

density in fig. 14. 

            

In fig. 15, the average throughput is performed by setting up the equal transmit power for all RRH. For 

the simulation, the maximal power of transmission is fixed at 0.5 and 1.0W. By varying the transmit 

power, Co-ordinated UE system gets increased throughput by increasing the transmit power. The 

throughput gets loss in the performance due to the high interference among RRH’s in the network. The 

transmit power gets increases, throughput also gets increased and it is illustrated in fig. 16. Here, 

interference µ from RRH increases, the throughput also gets increased by increasing the allocated 

transmit power.   

 

Fig. 15. Throughput Convergence 

 

         Fig. 16. Throughput Performance with 

different TPmax  

In fig. 17, the color proportion is calculated for the Co-ordinated UE system based on the number of 

oscillation. The more colors gets less problem at the boundary of radio in each oscillation. If each cell 

is assigned with the same color will decrease the convergence based on the number of iteration. RAN   

can also be analyzed based on security issues such as confidentiality and authentication based on UE 

prediction [40]. 

  



 
Fig. 17. Color proportion Vs Number of oscillation convergence  

 

VI. Conclusion 
 

As user expectations are increasing every day, networks are also evolving accordingly. The future 

network should provide seamless service with minimal latency by high resource utilization. In this 

article, we considered various problems that arise when different spectrum bands operate under one 

umbrella and we have effectively managed to provide an interoperability architecture for the future 

evolving 5G network. In this work, we proposed a Multi-tier H-CRAN architecture, that incorporates 

heterogeneous networks to operate under a single controller by predicting the user expectation and 

selecting the desired network based on the user profile. The machine learning paradigm is used to learn 

the user profiles and network conditions under different payload and we simulated the real time traffic 

through the network simulator. The proposed mechanism have been analysed under several conditions 

through simulation and we found that adopting a machine learning paradigm to the C-RAN paves the 

way for providing intelligence in the network selection. Also, our mathematical analysis reveals that 

adaptability of the proposed architecture is smooth and highly scalable. The future work of this article 

is planned to be extended for strengthening the bits of intelligence for the decision making in network 

selection and to provide optimal resource allocation.  
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