31 research outputs found

    Nature-based solution to eliminate cyanotoxins in water using biologically enhanced biochar.

    Get PDF
    Climate change and high eutrophication levels of freshwater sources are increasing the occurrence and intensity of toxic cyanobacterial blooms in drinking water supplies. Conventional water treatment struggles to eliminate cyanobacteria/cyanotoxins and expensive tertiary treatments are needed. To address this, we have designed a sustainable, nature-based solution using biochar derived from waste coconut shells. This biochar provides a low-cost porous support for immobilising microbial communities forming biologically enhanced biochar (BEB). Highly toxic microcystin-LR (MC-LR) was used to influence microbial colonization of the biochar by natural lake water microbiome. Over 11 months, BEBs were exposed to microcystins, cyanobacterial extracts and live cyanobacterial cells, always resulting in rapid elimination of toxins and even a 1.6-1.9 log reduction in cyanobacterial cell numbers. After 48 hours incubation with our BEBs, the MC-LR concentrations dropped below the detection limit of 0.1 ng/ml. The accelerated degradation of cyanotoxins was attributed to enhanced species diversity and microcystin-degrading microbes colonising the biochar. To ensure scalability, we evaluated BEBs produced through batch-scale and continuous-scale pyrolysis, while also guaranteeing safety by maintaining toxic impurities in biochar within acceptable limits and monitoring degradation by-products. This study serves as a proof-of-concept for a sustainable, scalable and safe nature-based solution for combatting toxic algal blooms

    The role of feedstock and activation process on supercapacitor performance of lignocellulosic biochar

    Get PDF
    Porous carbons derived from lignocellulosic biomass and their use in electrochemical applications are attracting a growing level of interest due to the sustainable nature of the materials and its favourable properties. This study investigates the influence of feedstocks and three activation methods (CO2, steam, and KOH) on the electrochemical properties of lignocellulosic biochars. The results showed that activated biochars derived from straw biomass had a higher specific capacitance than wood-derived activated biochars, despite lower electrical conductivity and porosity. Furthermore, chemical activation using KOH was found to increase the capacitance of activated biochars compared to physical activation using steam and CO2, although sometimes at the expense of electrical conductivity. The study highlights the importance of carefully selecting the feedstocks and activation methods to optimise the electrochemical properties of biochar for potential use as a sustainable supercapacitor material

    Speaking rate attention-based duration prediction for speed control TTS

    Full text link
    With the advent of high-quality speech synthesis, there is a lot of interest in controlling various prosodic attributes of speech. Speaking rate is an essential attribute towards modelling the expressivity of speech. In this work, we propose a novel approach to control the speaking rate for non-autoregressive TTS. We achieve this by conditioning the speaking rate inside the duration predictor, allowing implicit speaking rate control. We show the benefits of this approach by synthesising audio at various speaking rate factors and measuring the quality of speaking rate-controlled synthesised speech. Further, we study the effect of the speaking rate distribution of the training data towards effective rate control. Finally, we fine-tune a baseline pretrained TTS model to obtain speaking rate control TTS. We provide various analyses to showcase the benefits of using this proposed approach, along with objective as well as subjective metrics. We find that the proposed methods have higher subjective scores and lower speaker rate errors across many speaking rate factors over the baseline.Comment: \c{opyright} 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    Carbon-based nanomaterial hybrids energy storage applications

    No full text
    Supercapacitors are emerging as highly promising electrochemical energy storage devices, which can be sources of clean and sustainable energy. Off late, a lot of studies are ongoing in the field of carbon-based hydrogels for use in electrodes for supercapacitors. A lot of hybrid materials employing carbon frameworks and pseudo-capacitive materials are finding a lot of importance in the current scientific environment, as they synergistically improve the electrochemical performance of the supercapacitor electrode. It is also highly imperative to carefully choose the components of the hybrid, since the final properties and performance of the material will highly depend on the individual properties of the components. In the light of these important parameters, my study focuses on the synthesis of hybrid materials with carbon-based materials for a base. In the initial phase of my work, soft materials like three-dimensional graphene hydrogel hybrid systems were used. Polyaniline and manganese oxides nanoparticles were embedded in a graphene hydrogel matrix and their performance was studied for supercapacitor applications. Zeolite imidazole framework-derived (ZIF-67) nickel cobalt mixed oxides were then embedded in graphene hydrogels and were found to perform better than the Manganese oxide/polyaniline/graphene hydrogel. A biomass-derived carbon/Ni Co metal nanoparticle system was designed to mimic this graphene/Ni Co mixed oxide system, with a new and non-conventional use of a coconut tree fibre, coconut leaf sheath; a cheap substitute for graphene. My study shows the possibility of using a well-studied, optimised and functionalised biomass-derived carbon as a cheap substitute for graphene and the detailed comparison studies have shown that the energy-power density matrix for a biomass derived carbon framework embedded with ZIF-derived Ni-Co nanoparticles is comparable with a graphene/ZIF-derived Ni Co mixed oxide system. This highlights the untapped potential in our abundantly available renewable resources like biomass.Doctor of Philosoph

    Bifunctional sulfonated MoO3 – ZrO2 binary oxide catalysts for the one-step synthesis of 2,5-diformylfuran from fructose

    No full text
    Sulfonated MoO3–ZrO2 binary oxides (MZS) with different Mo/Zr ratios were synthesized and applied as bifunctional catalysts for the simple one-pot transformation of fructose to 2,5-diformylfuran (DFF). The presence of Brønsted acid sites and the molybdenum oxide species in the catalysts is responsible for the high efficiency and good activity of the catalysts. The former contributes to a high yield of 5-hydroxymethylfurfural (HMF) in the fructose dehydration, and the latter has the role of catalyzing the selective aerobic oxidation of the resulted HMF into DFF. In optimized reaction conditions, DFF yield of 74% with fructose of 100% can be achieved in a one-step reaction. The catalyst can be separated, simply regenerated, and reused without any significant loss in activity, indicating its great potential for the industrial mass production of DFF from fructose.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore

    Bimetal/metal oxide encapsulated in graphitic nitrogen doped mesoporous carbon networks for enhanced oxygen electrocatalysis

    No full text
    In this study, Fe doped, Co and CoO encapsulated N doped carbon frameworks were prepared from simple hybrid zeolite imidazole frameworks (ZIF) with extra N enrichment. The facile strategy included preparation of ZIF-8 core and ZIF-67 shell and later replacing the metal centers of ZIF with Fe ions and increasing the N content with N rich melamine. The metal and metal oxide components got captured and encapsulated in the N doped mesoporous carbon frameworks through a pyrolysis process at different temperatures. Fe, Co and CoO were trapped in the N doped mesoporous carbon networks through annealing and denoted as FCNCx. The activity and electrochemical stability of such prepared materials towards ORR and OER were tested in basic media. After analyzing rotating disk electrode studies, FCNC900 was seen to perform superior bifunctional electrocatalytic performance for both ORR and OER which was higher than Pt/C catalyst. Promising ORR performance of FCNC900 can be simply be judged from E 1/2 =0.868 V (vs. RHE) and E onset =1.01 V (vs. RHE) while OER overpotential for same catalyst was 360 mV much smaller than others. Longer stability and high methanol tolerance of this catalyst was also investigated.Ministry of Education (MOE)This work was supported by the AcRF Tier 1 grant (RT17/16), provided by Ministry of Education in Singapore
    corecore