2,575 research outputs found

    A Review of International Space Station Habitable Element Equipment Offgassing Characteristics

    Get PDF
    Crewed spacecraft trace contaminant control employs both passive and active methods to achieve acceptable cabin atmospheric quality. Passive methods include carefully selecting materials of construction, employing clean manufacturing practices, and minimizing systems and payload operational impacts to the cabin environment. Materials selection and manufacturing processes constitute the first level of equipment offgassing control. An element-level equipment offgassing test provides preflight verification that passive controls have been successful. Offgassing test results from multiple International Space Station (ISS) habitable elements and cargo vehicles are summarized and implications for active contamination control equipment design are discusse

    Building 4755 Test Facility Overview

    Get PDF
    No abstract availabl

    The Impacts of Cabin Atmosphere Quality Standards and Control Loads on Atmosphere Revitalization Process Design

    Get PDF
    Maintaining the cabin atmospheres pressure, composition, and quality within specified parameters is a necessity for successful crewed space exploration missions. A properly maintained environment minimizes health impacts on the occupants and maximizes their comfort. The challenge is to accomplish this outcome economically. The insight gained during the International Space Stations (ISS) operational lifetime is driving toward more challenging cabin atmospheric quality standards for future exploration missions. At the same time, the metabolic loads are increasing to accommodate a broader crew body size range and more rigorous exercise protocols to mitigate health effects associated with long duration microgravity exposure. Compounding this situation is new process equipment for handling trash and waste that may vent contaminants into the cabin. The limits placed on the cabin atmospheric quality parameters combined with the contaminant load define the design space for the atmosphere revitalization (AR) subsystem technologies to be deployed aboard the spacecraft. The impacts of changes to cabin atmospheric quality standards and contamination loads are evaluated and implications to future crewed exploration missions are explored

    Methane and Carbon Monoxide Concentration Dynamics of the International Space Station Cabin Atmosphere

    Get PDF
    Methane and carbon monoxide are gaseous contaminants commonly found in a crewed spacecrafts cabin environment that are of interest to trace contaminant control equipment design. Generation sources include crew metabolism and equipment offgassing. Sources and generation rates of methane and carbon monoxide aboard the International Space Station (ISS) are examined. Cabin atmosphere concentration dynamics covering 19 years of ISS crewed operations are presented and correlation with octafluoropropane (Freon 218) concentration levels is analyzed

    Cantor Michael Weisser

    Get PDF

    Winston J. Craig

    Get PDF

    Regenerable adsorption system

    Get PDF
    A method for regenerable adsorption includes providing a substrate that defines at least one layer of ultra short channel length mesh capable of conducting an electrical current therethrough, coating at least a portion of the substrate with a desired sorbent for trace contaminant control or CO.sub.2 sorption, resistively heating the substrate, and passing a flowstream through the substrate and in contact with the sorbent

    Considering Intermittent Dormancy in an Advanced Life Support Systems Architecture

    Get PDF
    Many advanced human space exploration missions being considered by the National Aeronautics and Space Administration (NASA) include concepts in which in-space systems cycle between inhabited and uninhabited states. Managing the life support system (LSS) may be particularly challenged during these periods of intermittent dormancy. A study to identify LSS management challenges and considerations relating to dormancy is described. The study seeks to define concepts suitable for addressing intermittent dormancy states and to evaluate whether the reference LSS architectures being considered by the Advanced Exploration Systems (AES) Life Support Systems Project (LSSP) are sufficient to support this operational state. The primary focus of the study is the mission concept considered to be the most challenging-a crewed Mars mission with an extensive surface stay. Results from this study are presented and discussed

    An Environmental Impact Assessment of Perfluorocarbon Thermal Working Fluid Use On Board Crewed Spacecraft

    Get PDF
    The design and operation of crewed spacecraft requires identifying and evaluating chemical compounds that may present reactivity and compatibility risks with the environmental control and life support (ECLS) system. Such risks must be understood so that appropriate design and operational controls, including specifying containment levels, can be instituted or an appropriate substitute material selected. Operational experience acquired during the International Space Station (ISS) program has found that understanding ECLS system and environmental impact presented by thermal control system working fluids is imperative to safely operating any crewed space exploration vehicle. Perfluorocarbon fluids are used as working fluids in thermal control fluid loops on board the ISS. Also, payload hardware developers have identified perfluorocarbon fluids as preferred thermal control working fluids. Interest in using perfluorocarbon fluids as thermal control system working fluids for future crewed space vehicles and outposts is high. Potential hazards associated with perfluorocarbon fluids are discussed with specific attention given to engineering assessment of ECLS system compatibility, compatibility testing results, and spacecraft environmental impact. Considerations for perfluorocarbon fluid use on crewed spacecraft and outposts are summarized
    corecore