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Maintaining the cabin atmosphere’s pressure, composition, and quality within specified 

parameters is a necessity for successful crewed space exploration missions. A properly 

maintained environment minimizes health impacts on the occupants and maximizes their 

comfort. The challenge is to accomplish this outcome economically. The insight gained during 

the International Space Station’s (ISS) operational lifetime is driving toward more challenging 

cabin atmospheric quality standards for future exploration missions. At the same time, the 

metabolic loads are increasing to accommodate a broader crew body size range and more 

rigorous exercise protocols to mitigate health effects associated with long duration 

microgravity exposure. Compounding this situation is new process equipment for handling 

trash and waste that may vent contaminants into the cabin. The limits placed on the cabin 

atmospheric quality parameters combined with the contaminant load define the design space 

for the atmosphere revitalization (AR) subsystem technologies to be deployed aboard the 

spacecraft. The impacts of changes to cabin atmospheric quality standards and contamination 

loads are evaluated and implications to future AR subsystem equipment design for future 

crewed exploration missions are explored. 

Nomenclature 

AR = atmosphere revitalization 

CDRA = Carbon Dioxide Removal Assembly 

CFU = colony forming unit 

ECLS = environmental control and life support 

EVA = extravehicular activity 

ISS = International Space Station 

NASA = National Aeronautics and Space Administration 

TCC = trace contaminant control 

C = concentration/Celsius 

d = day 

ft = feet 

g = gram 

h = hour 

K = Kelvin 

m = mass/meter 

M = molecular weight 

mol = mole 

mm = millimeter 

p = pressure/partial pressure 

Pa = pascal 

t = time 

T = temperature 

TH = toxic hazard index 

r = generation rate 

R = ideal gas constant 

V = volume 
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η = efficiency 

ηm = micrometer 

CO2 = carbon dioxide 

Hg = mercury 

LiOH = lithium hydroxide 

I. Introduction 

UCCESSFULLY executing crewed space exploration missions requires a safe, breathable cabin atmosphere 

which is maintained within specified pressure, composition, and quality standards. The goal is to provide a living 

environment in which the occupants are healthy, comfortable, and productive during all mission phases. Such an 

environment minimizes health impacts on the occupants and maximizes their comfort. Accomplishing this goal 

economically is a substantial technical challenge for the environmental control and life support (ECLS) system. The 

ECLS system aboard crewed spacecraft consists of various subsystems to purify the atmosphere, control atmospheric 

pressure and composition, control cabin temperature and humidity levels, recover and manage water, manage waste, 

and respond to emergency situations.1 Specific to minimizing crew health impacts, the atmosphere revitalization (AR) 

subsystem purifies the cabin atmosphere by removing carbon dioxide (CO2), trace chemical contaminants, and 

particulate matter via various means. 

Carbon dioxide removal is accomplished via consumable or regenerable means depending on the mission needs. 

Short duration missions, typically those lasting 20 days or less, have used consumable lithium hydroxide (LiOH)-

based CO2 removal approaches. Such an approach is economically and logistically impractical for longer duration 

missions which have used approaches based on regenerable sorbents.2 According to a mission’s logistics needs, the 

CO2 removed from the cabin atmosphere may be disposed of or processed to recover oxygen.  

Active trace contaminant control (TCC) is typically provided via a combination of adsorbent and catalytic 

oxidation processes. Granular activated carbon and precious metal catalysts are commonly employed in TCC process 

equipment.3 

Removing suspended particulate matter, including the crew-generated bioburden and debris associated with crew 

activities, from the cabin atmosphere protects crew health, prevents equipment fouling, and aids in general 

housekeeping by maintaining a low total dust level in the cabin environment. Various screens and media filters are 

commonly deployed throughout the cabin ventilation system to collect particulate matter. The collected particulate 

matter is disposed of via filter element replacement coupled with routine housekeeping to remove debris that 

accumulates on ventilation screens. 

All of the AR subsystem process equipment acts on a generation load to maintain the cabin atmosphere within a 

specified standards for CO2 partial pressure, trace contaminant concentrations, and suspended particulate matter 

concentrations. The cabin material balance applied to the combination of generation load and cabin atmospheric 

standard provides the design guidance for establishing process equipment flow rates and single pass efficiencies. The 

following presents and discusses the influences that the generation load magnitude and cabin atmospheric standard 

have on AR subsystem process equipment design. 

II. The Design Basis 

For crewed space exploration missions the cabin atmospheric quality parameters are maintained within limits 

specified by the NASA Space Flight Human-System Standard (NASA-STD-3001) with further guidance provided by 

the NASA Human Integration Design Handbook (NASA/SP-2010-3407). In some instances, the specified limits and 

loads may be tailored for a particular mission by taking into account recently published research and crewed space 

flight experience. The limits placed on the cabin atmospheric quality parameters combined with the relevant 

contaminant load define the design space for the AR subsystem process equipment. 

Selecting the specific process technologies to be deployed aboard the spacecraft for each AR subsystem function 

in order to best conform with mission objectives constitutes a trade space that is beyond the scope of this work. 

Examples presented by this work are not meant to endorse a specific process technology but are selected to illustrate 

influences that the combination of generation load magnitude and cabin atmospheric standards have on key equipment 

design parameters, particularly process air flow rate. 

Using CO2 removal as an example, the CO2 partial pressure defined in NASA-STD-30014 and the crew metabolic 

load contained in NASA/SP-2010-34075 serve as inputs to a cabin-level CO2 material balance that is used to determine 

the CO2 removal equipment’s effective process air flow rate. This material balance, defined by Eq. 1 for a mass basis, 
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is similarly applied to TCC and particulate matter removal design and is instrumental for establishing the equipment’s 

performance as well as understanding impacts resulting from varying the key cabin atmospheric quality parameters. 

𝑑𝑚
𝑑𝑡⁄ = 𝑟𝑖 − (

𝜂�̇�
𝑉⁄ )m             (1) 

In Eq. 1, m is mass (g), t is time (h), ri is contaminant generation rate (g/h), �̇� is the removal device volumetric 

flow (m3/h), η is the removal’s single pass efficiency (dimensionless), and V is the cabin volume (m3). Dividing Eq. 1 

by the cabin volume yields Eq. 2 which is the material balance for a concentration basis where C is the contaminant 

concentration (g/m3). 

𝑑𝐶
𝑑𝑡⁄ =

𝑟𝑖
𝑉⁄ − (

𝜂�̇�
𝑉⁄ ) 𝐶              (2) 

For AR subsystem design, particularly for TCC and particulate matter removal, the steady state form of Eq. 2 is 

used in which the removal and generation terms balance. Equation 3 provides the steady state material balance for the 

concentration basis. 

 𝐶 =
𝑟𝑖

𝜂�̇�⁄                       (3) 

In the case of CO2 removal, a pressure basis is commonly used. Concentration can be converted to pressure via the 

ideal gas law according to Eq. 4 where M is molecular weight (g/mole), p is partial pressure (Pa), R is the ideal gas 

constant (8.314 m3·Pa/mol·K), and T is absolute temperature (K). 

𝐶 =
𝑀𝑝

𝑅𝑇⁄               (4) 

Substituting Eq. 4 into Eq. 2 yields Eq. 5 which is the material balance for a pressure basis.  

𝑑𝑝
𝑑𝑡

⁄ = (𝑅𝑇
𝑀𝑉⁄ )𝑟𝑖 − (

𝜂�̇�
𝑉⁄ ) 𝑝                 (5) 

At steady state, the rate of change is zero and the removal and generation terms balance. At this condition Eq. 5 

simplifies to yield Eq. 6. 

p = (𝑅𝑇
𝑀⁄ ) (

𝑟𝑖
𝜂�̇�⁄ )                      (6) 

Solving Eq. 6 for the removal flow rate, 𝜂�̇�, yields Eq. 7 which is the basic design equation for CO2 removal  

𝜂�̇� = (𝑅𝑇
𝑀⁄ )(

𝑟𝑖
p⁄ )                       (7) 

equipment using a pressure basis. Similarly, solving Eq. 3 for the removal flow rate yields Eq. 8. 

𝜂�̇� =
𝑟𝑖

𝐶⁄                            (8) 

Equations 7 and 8 illustrate the relationship that exists between the cabin air quality limit, the crew metabolic load, 

and the active removal hardware flow rate. As can be seen by examining Eqs. 7 and 8, the active AR subsystem  

removal device flow rate is directly proportional to the generation rate and inversely proportional to contaminant 

partial pressure or concentration. Thus, the required flow rate increases as the specified partial pressure or 

concentration decreases or as the generation rate increases. A combination of a high generation rate and a low partial 

pressure or allowable concentration specification requires high flow capacity to achieve the desired cabin condition. 

A high flow capacity results in attendant impacts on equipment mass, power, and volume. 

The following considers the impacts associated with variations in the cabin air quality limits and generation rate 

specifications relating to AR subsystem equipment design. It is assumed that technologies used in the AR equipment 

is similar to those deployed aboard the International Space Station (ISS) for CO2 removal, trace contaminant control, 

and airborne particulate filtration. 
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III. Carbon Dioxide Removal Design Impacts 

As illustrated by Eq. 7, the key design parameters for CO2 removal technologies are the crew metabolic load (ri) 

and the cabin partial pressure limit (p) which are used to determine the necessary removal device flow rate (𝜂�̇�). These 

parameters are applied to the exploration mission CO2 removal system design constraints for mass, power, and 

volume.6 In the case of CO2, the crew metabolic load defined by NASA/SP-2010-3407 is 43.3 g/h for a single person. 

This equates to 173.3 g/h for a crew of four. This crew size is specified for cis-lunar and Mars transit habitable 

platforms7 and is applied to the metabolic load defined by NASA/SP-2010-3407 as the basis for CO2 removal 

technology development. 6 

Applying Eq. 7 to this 4-crewmember load for a range of cabin partial pressures yields the necessary volumetric 

flow. Varying the single pass efficiency, η, results in a family of curves illustrated by Fig. 1. This family of curves 

applies to the CO2 removal function in general and is not specific to the process technology employed or the 

exploration vehicle or habitat platform on which the equipment is deployed. For reference, typical physical adsorption-

based CO2 removal process efficiencies range between 75% and 85% for a partial pressure control range between 213 

Pa (1.6 mm Hg) and 533 Pa (4 mm Hg). Process efficiencies for other candidate process technologies may vary 

similarly. 

The partial pressure range presented in Fig. 1 extends from 67 Pa (0.5 mm Hg) to 800 Pa (6 mm Hg) which covers 

a range of partial pressures of interest to designing and sizing spacecraft CO2 removal equipment summarized in Table 

1. Included in Table 1 are NASA spacecraft maximum allowable concentrations for continuous exposures ranging 

from 7 days to 1000 days8, 9 and a recommended physiological limit10 for long duration crewed exploration missions. 

The typical operating range for the CO2 partial pressure aboard the ISS that is maintained by the combined action 

of the CDRA in the U.S. Segment and the Vozdukh unit located in the Russian Segment on a 6-crewmember load is 

between 267 Pa (2 mm Hg) and 533 Pa. The Vozdukh provides up to 27 m3/h actual flow11 that when combined with 

the nominal ~35 m3/h CDRA flow provides a total ~62 m3/h CO2 removal flow rate. This configuration nominally 

controls the CO2 partial pressure to ~400 Pa (3 mm Hg) for a 6-crewmember load.12 

 
Figure 1. Flow rate for CO2 control at different partial pressure targets. 
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Table 1. Carbon dioxide concentrations of interest for spacecraft ARS equipment design. 

 
*At 101.3 kPa and 294 K. 

A. Impacts from Design Point Specifications 

As can be seen from Fig. 1, the volumetric flow rate required for the CO2 removal process increases rapidly for 

cabin conditions below 300 Pa (2.5 mm Hg). Operating in the range below 267 Pa requires increasing the flow by 

100% relative to operating at 533 Pa and by 50% relative to operating at 400 Pa (3 mm Hg). This holds for the entire 

family of curves in Fig. 1. 

It should be noted that the family of curves depicted by Fig. 1 represent the flow rate necessary to maintain a steady 

state concentration condition. Actual flow rate capability must be higher to attenuate peak concentrations during the 

load levels experienced during crew exercise periods and also to account for crew distribution in a habitable volume. 

The former can become a significant challenge for exploration-class vehicles that will have a cabin volume that is 

~80% smaller than the ISS cabin volume thus affording less concentration attenuation during peak metabolic load 

periods. The latter consideration can require applying up to a 20% margin to the target control point to account for 

concentration gradients.13 Thus, if the target control point is 267 Pa, the CO2 removal design point should use a 20% 

lower partial pressure or 213 Pa (1.6 mm Hg) as noted in Table 1. At this design point, the flow is 150% higher than 

controlling to 533 Pa and 88% higher than operating at 400 Pa. This margin magnitude is approximately two times 

the magnitude of the typical module-to-module partial pressure gradient of 37 Pa (0.28 mm Hg) compared to the 

control point of 400 Pa observed aboard the ISS; however, material balance studies under worst case conditions with 

the entire crew situated in a remote location from the removal equipment can approach a gradient magnitude of 80 Pa 

(0.6 mm Hg). Thus, the 20% margin is considered to be a reasonable magnitude. 

A potential problem that may arise for CO2 removal processes that include a process air drying stage is over-drying 

the cabin during low metabolic loading periods. The CO2 removal equipment may have to provide an automated 

software control strategy and equipment capability to provide for variable flow and process variable adjustment 

capabilities. Adding such features may complicate the hardware control design. The need for such a capability requires 

additional study. 

B. Impacts from Metabolic Load Specification 

As is evident from Eq. 6, the CO2 removal process flow rate is directly proportional to the metabolic load. If the 

daily exercise duration increases or the crewmember physical size increases, a higher metabolic load results. For 

example, modifying the exercise period to include 45 minutes of aerobic activity and 45 minutes of resistance activity 

combined with accounting for two 95th percentile male crewmembers at ~26% higher metabolic loading than the basic 

load specified by NASA/SP-2010-3407.14 Incorporating the two 95th percentile crewmembers within the exploration 

mission 4-crew guideline increases the metabolic load by 17% to 202.5 g/h. Given that the CO2 removal process flow 

rate is directly proportional to the metabolic load, an equivalent flow rate functional margin is necessary to 

accommodate variations in crewmember physical characteristics and their daily activity levels. 

ppm volume % Pa mm Hg mg/m
3

409 0.04 41 0.31 746 Earth atmospheric 2018 (https://www.co2.earth/daily-co2)

2150 0.22 218 1.6 3922 20% margin for proposed exploration mission

2632 0.26 267 2.0 4801 Proposed exploration mission

3947 0.39 400 3.0 7200 ISS CHIT (guideline); 20% margin for NASA 1000-d (2008)

5000 0.50 507 3.8 9121 Waligora nominal level 1979
10

;  NASA 1000-d (2008)
8

5263 0.53 533 4.0 9601 ISS Flight Rule B13-53

5578 0.56 565 4.2 10176 20% margin for NASA 180-d (1996; 2008)

7000 0.70 709 5.3 12770 NASA 7-/30-/180-d (1996; 2008)
8, 9

10000 1.00 1013 7.6 18242 Waligora 1979 space flight limit
10

12895 1.29 1307 9.8 23524 NASA 1-hour/24-hour (1996; 2008)
8, 9

13158 1.32 1333 10.0 24003 NASA exposure >8 hours not permitted

19737 1.97 2000 15.0 36005 NASA off-nominal level, requires immediate action

26316 2.63 2666 20.0 48007 NASA emergency level

Concentration*
Notes
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Figure 2. Functional margin applied to a CO2 removal unit operating at 78% efficiency to 

accommodate metabolic load growth. 

Figure 2 shows a 17% margin, depicted by the error bars, applied to the flow rate curve for a CO2 removal unit 

operating at 78% efficiency. This functional margin is on top of the 20% design point margin. Thus, at a 213 Pa design 

point resulting from the 20% partial pressure design point margin the required flow to accommodate 17% increase in 

metabolic load is 67.7 m3/h. This flow exceeds the combined flow of the ISS CDRA and Vozdukh units and is 119% 

and 191% higher than the unadjusted design points at 400 Pa and 533 Pa, respectively. 

It is interesting to note that the technical evaluation reported by Ref. 12 indicates that the Vozdukh and two CDRA 

units must be operating to consistently maintain the CO2 partial pressure below 267 Pa. The process flow capacity of 

operating the Vozdukh and two CDRA units provides ~96 m3/h to maintain a CO2 partial pressure condition <267 Pa 

for a 6-crewmember load. This normalizes to ~16 m3/h-crewmember. Applying this specific flow rate to a 4-

crewmember load yields ~64 m3/h which is consistent with the 67.7 m3/h flow rate necessary to accommodate both a 

lower partial pressure and crew metabolic load variation. This similarity in flow rate indicates that the CO2 removal 

capability aboard the ISS is a good indicator of the resources necessary for CO2 control aboard future exploration-

class vehicles and habitats. As noted earlier, these flow rate increases apply to the CO2 removal function in general 

and are not specific to the process technology employed or the exploration vehicle or habitat platform on which the 

equipment is deployed. 

Further capability margin beyond 17% may be necessary to accommodate an exploration requirement for the Orion 

vehicle to provide a capability to support a crew size up to six.15 The crew size for cis-lunar habitats and Mars transit 

vehicles is specified to be four;7 however, these deep space habitats and vehicles may likely need to provide for at 

least the 17% capability margin. 

C. Impacts from Interaction between the Design Point and Removal Efficiency 

The removal efficiency is an important factor in Eq. 6. While Fig. 2 is based on 78% removal efficiency at the 267 

Pa design point, as the design point is lowered a lower efficiency is likely. This is due to the mass transfer limitation 

associated with adsorption and absorption processes. Testing conducted in 2014 for an adsorption-based process 

operating at 42.5 m3/h observed peak efficiency of ~83% at ~530 Pa.16 At the 267 Pa design point, ~78% removal 
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efficiency was observed. The flow rate magnitude required to control to the 267 Pa design point is consistent with the 

performance curve illustrated by by Fig. 2. Below the 267 Pa design point the efficiency was observed to decrease 

sharply toward 65% as the CO2 partial pressure approached 133 Pa. At a 213 Pa design point, an efficiency of ~74% 

is expected based on these testing results. To accommodate reduced efficiency, a 5% flow rate increase is required. It 

should be noted that these results required adjusting the adsorbent bed regeneration cycle from 144 minutes to 90 

minutes. The combination of a more rapid regeneration cadence required a minimum 200 W increase in heater power. 

Additional power is required to provide the higher flow rate. 

D. Power Growth at Low Carbon Dioxide Partial Pressure Design Points 

As the process flow rate rises, the means to provide flow through the system, managing pressure drop through the 

system, and provide process heating and cooling become more technically challenging. The higher flow rates 

necessary to achieve lower cabin CO2 partial pressures lead to overall higher power requirements for the CO2 removal 

functional element. As shown by Fig. 3,17 the blower power and average heater power rise substantially for controlling 

the cabin CO2 partial pressure below 400 Pa for state-of-the-art adsorbent-based process technology capable of 

supporting life support system mass closure. The ISS CDRA serves as a basis for the power growth estimate. The 

increase in heater power results because it is necessary to use shorter regeneration cycle times to accommodate the 

more rapid bed loading produced by the higher flow rate. The overall effect is that the total average power required 

for a CO2 removal design point at 213 Pa is estimated to be >1.3 kW which is 62% higher than the 0.8 kW for the 400 

Pa design point. This power magnitude is similar to what is indicated by Ref. 12 in which the systems aboard the ISS 

require ~350 W/crewmember to maintain a CO2 partial pressure <267 Pa. The power may rise by a greater magnitude 

to provide the capability to attenuate peak cabin concentrations experienced during crew exercise periods. Peak power 

may increase by a similar magnitude. 

It should be noted that the state-of-the-art CO2 removal capabilities aboard the ISS cannot achieve partial pressures 

below 267 Pa without redesigning the blower to accommodate the higher flow rates needed. Therefore, a significant 

blower design effort is necessary along with developing other components such as selector valves that can withstand 

a greater number of actuation cycles per annum while still providing overall higher reliability. Some of these 

performance goals could prove to be mutually exclusive. 

 
Figure 3. Average power for controlling CO2 to various concentrations.17 
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E. Impacts on Recovering Oxygen from Carbon Dioxide 

At lower cabin partial pressures, the working capacity of adsorption-based and absorption-based process 

technologies similar to the ISS CDRA and amine-based sorbents decreases because the mass transfer driving force, 

which is sensitive to concentration, decreases. This phenomenon is illustrated by Fig. 4 for a physical adsorption-

based process using Grade 544 13X zeolite adsorbent media.18 In this illustration, the adsorption isotherm at 10 °C is 

shown with the CO2 partial pressure at 267 Pa compared to 133 Pa (1 mm Hg). At these conditions, there is a 19.8% 

reduction in working capacity which can be expected during the adsorption step (1). This is important in that as shown 

by Fig. 4, the reduced working capacity means a lesser quantity of CO2 available at any time to deliver to a downstream 

CO2 reduction process in step (2) and bed pressure reduction provided by a downstream compressor in step (3) which 

is illustrated by the red lines. The adsorption isotherm at 200 °C is shown which establishes the residual loading. To 

fully regenerate the adsorbent, exposure to space vacuum is necessary in step (4). The cycle then repeats. Compared 

to operating at partial pressures between 533 Pa and 400 Pa, operating at partial pressures of 267 Pa and lower can 

result in up to 33% reduction in working capacity for a system sized within the mass and volume constraints for state-

of-the-art CO2 removal technology. Such working capacity impacts are expected for any CO2 removal technology that 

is mass transfer limited. Unless this effect is compensated for in some way, the ability to meet exploration goals for 

reclaiming oxygen from CO2 will be compromised. 

Compensating for the reduced working capacity may require process changes to use more rapid regeneration cycles 

than necessary merely to control the CO2 load which have the effect of increasing the average power necessary to 

regenerate the beds beyond the levels discussed earlier. Improved single pass efficiency at higher process flow rates 

will also be necessary regardless of the process technology. This aspect needs to be evaluated in detail and fully 

understood to quantify the degree of the impact. These more rapid cycles also lead to more frequent valve cycling and 

higher duty cycles for other supporting components which lead to shorter service lives. In turn, shorter service lives 

leads to the need to plan for higher maintenance frequency and may require more spare parts to be maintained in the 

mission inventory leading to an overall increase in mission mass and volume. These effects can place the objective to 

provide a CO2 removal function for exploration missions within a mass, power, and volume envelope that is smaller 

than the state-of-the-art equipment at significant risk. Substantial evaluation is necessary to fully quantify the extent 

of the impacts at both the functional and system levels. 

 

Figure 4. Cabin partial pressure effects on CO2 available for delivery to reduction processes.18 
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IV. Trace Contaminant and Particulate Matter Removal Design Impacts 

Equation 8 defines the effective flow rate for TCC and particulate matter removal equipment. As previously 

discussed, the process air flow rate is directly proportional to the load and inversely proportional to the maximum 

cabin concentration standard. Therefore, a higher process air flow rate is necessary to accommodate load growth 

combined with more stringent maximum cabin concentration standards. 

A. Trace Contaminant Control 

Design considerations for TCC are discussed in detail by Ref. 19 and a recommended design load is provided by 

Ref. 20 with additional guidance provided by Refs. 21 and 22. The total non-methane trace contaminant generation 

for an exploration class habitat with a crew of four is 37 mg/h. Ammonia, hydrogen, carbon monoxide, and methane 

generation are predominantly from human metabolic processes and four crewmembers add 8 mg/h, 17 mg/h, 3 mg/h, 

and 98 mg/h to the total load, respectively. The maximum cabin concentration standards are found in Ref. 9. The 

following narrative examines the impacts associated with trace contaminant load sources above the basic load 

consisting of crew metabolic products and equipment offgassing. As well, the impacts from more stringent maximum 

cabin concentration standards and how these standards are implemented for TCC equipment design are discussed. 

1. Additional Trace Contaminant Load Source Impacts 

In general, for small crewed vehicles and habitats trace contaminant generation from human metabolism is the 

dominant load source component. As the habitable cabin size approaches that of the ISS, the equipment offgassing 

component begins to become dominant. Yet, as the drive toward a higher degree of mission material balance closure 

is sought to achieve an Earth-independent logistics management goal, additional processing equipment for recovering 

water and managing trash is being introduced into the ECLS system that produce vent gases which contain a significant 

trace contaminant load. This additional equipment to recover water from urine distillation brine and a trash 

management unit that employs heated compaction.23, 24 If these processes do not employ source contamination control 

as part of their design and vent their contaminants into the cabin, then the added contaminant load increases the overall 

load on the primary cabin TCC equipment. As indicated by Eq. 8, increased load is directly proportional to increased 

TCC equipment flow rate to maintain the allowable cabin concentration condition. While equipment operation can be 

scheduled to minimize the impact, it is prudent that the active TCC capability be sufficient to accommodate the total 

load. 

Processing urine via vapor compression distillation has been observed to add 0.1 mg/h non-methane contamination 

to the basic TCC design load.25 This additional contamination load is <1% of the basic TCC design load and is easily 

accommodated within the functional margin of the active TCC equipment. The additional processes to enhance the 

degree of mission mass closure, however, produce much higher contamination loads. Recovering water from urine 

distillation brine is projected to produce 38 mg/h of additional non-methane contamination load during a typical 

process run while the heated trash compaction process is projected to produce 118 mg/h additional non-methane 

contamination load during a typical 390 minute process run.23, 26, 27 In practice, it is preferred to remove contamination 

from such processes at the source rather than venting it into the cabin environment. However, there may be utility in 

simplifying the urine brine and trash management equipment to vent directly into the cabin environment. Using Eq. 8 

to evaluate the flow rate impact associated with TCC load growth from these sources shows flow rate increases at a 

minimum on the order of a factor of two and a factor of four for recovering water from urine distillation brine and 

heated trash compaction, respectively. If both processes are to be used, then the TCC equipment flow rate must be 

increased by more than a factor of five. Proportional increases in TCC equipment volume and power can also be 

anticipated. The acceptability of such mass, power, and volume increases for the cabin TCC equipment must be 

determined by trade analysis versus the mass, power, and volume impacts associated with providing contamination 

control at the generation source. 

2. Maximum Cabin Concentration Updates and Implementation Impacts 

The maximum cabin concentration standards are periodically updated as new knowledge from human toxicology 

research becomes available. As well, as future exploration mission durations approach 1000 days, some concentration 

standards have been revised to mitigate health effects associated with the cumulative chemical exposure associated 

with the longer mission durations. For example, the maximum cabin concentration standard for ammonia, a key 

contaminant used to define the TCC equipment flow rate, has decreased from 7 mg/m3 in 1995 to 2 mg/m3 in 2008. 

For a given load, evaluation using Eq. 8 indicates this decrease in maximum cabin concentration standard requires a 

3.5 times increase in process air flow rate. 

In 2009, the metabolic ammonia production was reassessed and the design load decreased from 351 mg/d-

crewmember to 50 mg/d-crewmember.20 Compared to the combination of load and control standard in 1995, the flow 
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rate necessary to comply with the present load and control standard using common design practice to maintain the 

concentration below 50% of the maximum concentration standard is nearly two times lower. In this case the updated 

ammonia metabolic load offsets the lower maximum cabin concentration standard. 

Beyond updates to the maximum cabin concentration standard and load, the concept of toxic hazard index, TH, 

defined by Eq. 9 is being introduced as a TCC design criterion. In Eq. 9, Ci is the individual contaminant concentration 

𝑇𝐻 = ∑ 𝐶𝑖
𝐶𝑚𝑎𝑥

⁄               (9) 

and Cmax is the maximum concentration standard for the individual contaminant. The toxic hazard index addresses 

additive health effects and is consistent with the guidelines for threshold limit values for mixtures issued by the 

American Conference on Governmental Industrial Hygienists. This concept is also used by spacecraft environmental 

health organizations to evaluate the combined effects of the mixture of trace contaminants found in a typical cabin 

atmosphere. 

The relationship between toxic hazard index and the TCC effective flow rate is obtained by substituting for Ci in 

Eq. 9 with Eq. 8 solved for the contaminant concentration and rearranging to solve for the flow rate to yield Eq. 10. 

𝜂�̇� = (1
𝑇𝐻

⁄ ) ∑ 𝑟𝑖
𝐶𝑚𝑎𝑥

⁄                     (10) 

As can be seen from Eq. 10, flow rate and the toxic hazard index are inversely proportional. Also, the flow also 

increases as the number of contaminants used for design increases. Therefore, it is necessary to limit the number of 

contaminants used for design to avoid excessive flow rate growth when using the toxic hazard index as a design 

criterion. 

A proposed goal is to maintain the metabolic load component below a toxic hazard index value of 0.5. Achieving 

this condition can require the control concentration target to be as low as 21% of the maximum concentration 

standard.19 In total, accounting for maximum cabin concentration updates and load updates since 1995 and 

implementing the toxic hazard index as a design criterion results in a flow rate increase of 19% over the 1995 design 

point. Further analysis indicates that applying a toxic hazard index of 0.5 to the metabolic load component results in 

an increase in process air flow by a factor of 2.4 compared to the standard practice of designing to one-half the 

concentration standard. The latter flow increase magnitude can be reduced to a factor of 1.5 by maintaining an overall 

toxic hazard index value of 1.0 for the total contaminant instead of 0.5 applied to the metabolic load component. 

As noted previously in the discussion of Fig. 3, as flow rate increases the power needed to provide the motive force 

and in cases of thermal catalytic oxidation to heat the process air increases proportionally. Other impacts associated 

with increasing flow rate include more rapid adsorbent bed capacity consumption which leads to increased recurring 

costs. Adsorbent bed and other component designs, therefore, must balance is pressure drop characteristics and size 

to yield the most economical solution relative to mass, volume, power, and logistics management. 

B. Particulate Matter Removal 

Design considerations for particulate matter removal are presented by Ref. 28. Media filters used aboard crewed 

spacecraft typically provide >99.97% removal efficiency for the particle size range of interest in NASA-STD-3001. 

Particulate matter sources with consideration to the bioburden component are summarized. The impacts of the 

bioburden component generation load component and surface dust intrusion on the particulate matter removal flow 

rate is evaluated and discussed. 

1. Particulate Matter Control Standards and Generation Sources 

Standards applied to particulate matter in the cabin atmosphere cover not only suspended particulate matter but 

also the biological component associated with human-generated particles. According to guidance provided by NASA-

STD-3001, particulate matter concentrations in the cabin atmosphere must be maintained to <1 mg/m3 for the size 

range between 0.5 µm and 10 µm and <3 mg/m3 for the size range between 10 µm and 100 µm. This requirement is 

80 times less challenging than that used by the ISS Program which specified <0.05 mg/m3 for the size range between 

0.5 µm and 100 µm. The microbial concentrations must be maintained to <1000 CFU bacteria/m3 and <100 CFU 

fungus/m3. Key to specifying the technical solution that provides these conditions is an understanding of the particle 

generation sources and total load along with the microbial content of that total load. 

A literature survey indicates that people shed particles >0.5 µm in size at a rate of approximately 106 particles/hour 

or ~16670 particles/minute.29 Further details from the literature survey indicate particle generation rates of 0.9 +/- 0.3 

million particles/hour (10000 to 20000 particles/minute) for particles in the 2.5 µm to 10 µm range.30 For particles >5 

microns, Licina et al. reports 0.6 million/hour which is similar to findings of Bhangar et al. at 0.7 million/hour.31 In 
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general, the literature survey indicates that the fraction of particles below 1 µm can be generated at a rate of 57 million 

particles/hour (950000 particles/minute), the fraction >1 µm and <5 µm at a rate of 10 million particles/hour (166700 

particles/minute), and the faction >5 µm and <10 µm at a rate of 1 million particles/hour (16670 particles/minute). An 

additional 20000 particles/minute can be generated for the size fraction >10 µm.32 The 1.153 million particle/minute 

total generation rate for all size fractions is 51 times higher than the total load used as the design basis for the ISS 

cabin filtration design. On a mass basis, the generation is estimated to be ~1.33 mg/minute for a single crewmember. 

This is 4.3 times higher than the ISS cabin filtration design load. Of this mass generation load, 1.31 mg/minute is for 

the size fraction >10 µm. Controlling this load for a crew of four requires 0.8 m3/minute (2.8 ft3/minute) flow for the 

size fraction <10 µm and 1.7 m3/minute (61.6 ft3/minute) flow for the size fraction >10 µm. By comparison, meeting 

the ISS requirement using the ISS load for four crewmembers requires 24.8 m3/minute (876 ft3/minute). It is evident 

in this case that the less stringent cabin concentration standard results in a more manageable situation. However, 

another particulate matter removal component, the microbial generation load, which can dictate the total filtration 

system flow must be considered. 

The total particulate matter load possesses a microbial component. The literature survey cited previously indicates 

that approximately one of every 103 of the particles >2 µm is fungal related while one of every 106 particles <1 µm 

and one of every 103 of particles >1 µm is bacterial related. The fungal particles typically are in the range of 2 µm to 

50 µm and the bacterial particles are typically in the range of 0.1 µm to 6 µm.33 Usually, <1% of the bioburden is 

viable. Applying the bacterial and fungal associations, the microbial generation is estimated to be 204 bacteria-related 

particles/minute and 53 fungal-related particles/minute. The total microbial load of 257 particles/minute is 

approximately six times lower than the design load used for the ISS cabin filtration design. 

Coughing and sneezing can add significantly to this personal cloud. The number of particles produced by coughing 

varies from person to person and can produce between 1000 and 300000 particles for each instance.34 Mean particle 

size is approximately 10 µm with a range from 0.6 µm to 16 µm for healthy adults.35 Healthy adults cough infrequently 

according to one study at a rate of no more than twice each day.36 However, a study of healthy children reported 

approximately 11 coughing episodes per day.37 Similarly, sneezing can produce up to 100000 particles ranging in size 

between 1 µm and 2000 µm with most in the range between 2 µm and 100 µm. Reported geometric mean droplet size 

is approximately 74 µm.35 Sneezing episodes are reported to be less than four per day. In total, coughing and sneezing 

can add 694 particles/minute to the total particle generation load. The microbial content, however, is projected to be 

low in comparison to the microbial generation discussed previously due to the infrequent nature of coughing and 

sneezing by healthy adults. 

Based on a load consisting of 204 bacterial-related particles/minute and 53 fungal-related per crewemember, the 

filtration system flow to accommodate four crewmembers is 0.82 m3/minute (29 ft3/minute) and 2.12 m3/minute (74.9 

ft3/minute). Controlling the fungal-related particle generation load is the greatest cabin filtration challenge and can 

serve as a surrogate for controlling the entire crew-generated particulate load. Incorporating 10% to 20% design 

margin should yield a highly capable cabin filtration design. 

2. Surface Dust Intrusion 

Surface dust intrusion overlays the basic particulate generation load and is a major challenge for the cabin filtration 

system design. Lunar surface dust that enters the cabin environment must be maintained below 0.3 mg/m3 for the size 

range <10 µm according to guidance provided by NASA-STD-3001. Characterizing the surface dust intrusion load is 

instrumental to the filtration system design. Early attempts to characterize the load estimated that approximately 227 

grams of surface dust in the size range <10 µm per crewmember could collect on the extravehicular activity (EVA) 

suit.38 For a 2-person EVA, the time-averaged dust intrusion rate over 24 hours was estimated to be 22.1 mg/minute. 

This rate assumed that 7% of the dust becomes airborne while the remainder is controlled by other means before 

entering the surface habitat.39 This is a dust intrusion barrier effectiveness of 93%. Controlling this time averaged load 

within the cabin concentration standard requires 73.7 m3/minute (2600 ft3/minute) flow through a filtration system 

rated at 99.97% efficiency. This flow is substantially higher than what is necessary to control the basic crew-generated 

particulate matter load. If more effective barrier and EVA suit cleaning techniques are used, then the basic cabin 

filtration capability may be sufficient. Barrier and cleaning capabilities that prevent 99.6% of the surface dust from 

entering the habitable environment reduce the filtration flow for controlling surface dust to within the flow range to 

control the basic crew-generated particulate matter load. Doubling cabin filtration system flow still requires 99.2% 

dust intrusion barrier effectiveness. From this assessment, it is evident that preventing surface dust intrusion into the 

habitable environment is a significant challenge to economical surface exploration missions that comply with cabin 

particulate matter control standards. 
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V. Summary 

The cabin material balance shows the relationships between AR subsystem equipment flow rate, contaminant load, 

and allowable cabin partial pressure or concentration design point. These relationships were evaluated to quantify the 

impacts associated with changes in the generation loads and the partial pressure or concentration limits specified by 

the most current revisions of NASA-STD-3001, NASA/SP-2010-3407, and relevant supporting documentation. The 

primary impact is the need to increase the active AR subsystem equipment flow rate which to accommodate higher 

loads and lower design points leading to an accompanying power increase. 

A. Carbon Dioxide Removal 

In the example for a CO2 load produced by a crew of four, it is necessary to increase the active CO2 removal 

equipment flow rate by 87% from 31 m3/h to 58 m3/h in order to accommodate a lower partial pressure design point 

of 213 Pa relative to the 400 Pa control point imposed operationally aboard ISS and account for 20% functional 

margin. The lower partial pressure control point is expected to result in lower process efficiency which may require 

an additional 5% flow increase to 61 m3/h which is comparable to the total flow capability provided by operating two 

CDRA units in combination with the Vozdukh unit. To accommodate a higher metabolic load to include larger 

crewmembers and longer exercise periods may require an additional 17% increase in flow rate to 71 m3/h. In total, a 

129% increase in flow rate is necessary to accommodate both a lower partial pressure and higher metabolic load. 

Higher flow rates are accompanied by a need for a more capable and powerful blower and the need to cycle 

between adsorption and desorption cycles more rapidly. The estimated increase in average power for a system 

constrained within the mass and volume envelopes specified for exploration CO2 removal equipment development is 

>1.3 kW which is 62% higher than state-of-the-art process equipment and comparable to the power associated with 

deploying the total CO2 removal capability aboard the ISS. Peak power impacts may be expected to be similar in 

magnitude or higher. 

The lower CO2 partial pressure decreases the working capacity for the removal process. For a process based on 

physical adsorption, up to 33% reduction in working capacity may result from operating at a CO2 partial pressure 

approaching 133 Pa compared to a range between 400 Pa and 533 Pa. It is anticipated that all processes that are based 

on mass transfer into a solid or liquid phase will experience similar limitations as the mass transfer driving force is 

reduced at lower partial pressures. The reduced working capacity may make it difficult to reclaim sufficient oxygen 

from CO2 to meet exploration mission performance targets. This aspect requires further study to quantify the system-

level and mission impacts. 

Significant developmental work must be accomplished beyond core process technology selection to accommodate 

a lower partial pressure design point and greater metabolic load variation. Among this work is the need to provide 

high single pass efficiency as well as design and demonstrate the more capable and reliable hardware components that 

form the foundation of the exploration-class CO2 removal unit. A more capable blower is needed along with more 

robust valves, instrumentation, and thermal management strategies. Process control that can respond to cabin 

conditions to avoid over-drying the cabin during metabolic load minima while accommodating peak loads requires 

consideration and investigation. 

B. Trace Contaminant Control and Particulate Matter Removal 

Trace contaminant load contributions by system venting into the cabin can result in significant cabin TCC 

equipment flow rate increases by a factor of two to four depending on the type of process and the quantity of 

contamination vented. While updates to the ammonia’s maximum cabin concentration and generation load yield a 

flow rate reduction over the concentration and load design point in use in 1995, this reduction is offset by introducing 

the toxic hazard index as a design criterion. The equipment design impact can be minimized by specifying a toxic 

hazard index design criterion of 1.0 applied to the total load rather than 0.5 applied to the metabolic component of the 

load. 

The most significant particulate matter removal challenges are airborne microbes and dust intrusion into the 

habitable cabin during surface exploration. Particulate matter associated with bacteria and fungi are the primary 

determinants for the flow rate needed to maintain a healthy cabin environment requiring approximately 22% higher 

flow than for the particle load associated with the human personal cloud. Therefore, designing for the microbial load 

component provides functional margin for controlling the remaining particulate matter load. A major exception, 

however, is the surface dust intrusion load. For the basic cabin filtration system to be feasible for a surface exploration 

habitat, the barriers and operational controls for dust intrusion must be >99% effective. To ensure that the best design 
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basis is used for the filtration system, work must also be conducted to characterize the suspended particulate matter 

load in the cabin environment and make comparisons to the loads indicated by literature surveys. 

VI. Conclusion 

The estimated costs associated with a lower cabin atmospheric CO2 partial pressure design point and higher 

metabolic load relative to NASA-STD-3001 and NASA/SP-2010-3407 specifications are 129% higher flow; >62% 

higher average power; nearly 33% loss in available working capacity to achieve exploration mission life support 

system resource mass closure; and the need for substantial design, development, test, and evaluation of core 

components to yield a robust hardware design for exploration missions. 

The estimated costs for accommodating system venting in the cabin and using toxic hazard index as a design 

criterion are associated with a process flow increase by a factor of two to four. Attendant mass, power, and volume 

increases may be expected for TCC equipment capable of accommodating these contaminant load increase and air 

quality maximum concentration implementation. More detailed work must be accomplished to fully quantify the costs. 

Controlling the microbial load is the primary cost driver for the cabin filtration system and offers 22% functional 

margin for controlling the particulate load associated with the human personal cloud. To increase confidence in the 

literature-based design load, work must be conducted to characterize the suspended particulate matter load in the cabin 

environment and compare the results to the load characteristics indicated by literature surveys. Economical surface 

exploration is highly dependent on highly effective barriers and operational controls for dust intrusion. These barriers 

and controls must be >99% effective for standard cabin filtration systems and techniques to be applicable. 
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