13 research outputs found
Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature
The worldwide prevalence of chronic hepatitis C virus (HCV) infection is estimated to be approaching 200 million people We designed a mechanistically unbiased approach based on chemical genetics to identify chemical starting points for interfering with HCV replication. Our differentiating strategy centred on the identification of compounds functionally distinct from those acting on the traditional targets of antiviral research in this field, the NS3 protease and the NS5B RNA-dependent RNA polymerase 10 . BMS-858 formed the basis of an extensive series of chemical refinements that focused on improving antiviral potency, broadening inhibitory activity to encompass the HCV 1a genotype, and optimizing for oral bioavailability and sustained pharmacokinetic properties. After defining symmetry as an important contributor to antiviral activity 10 , a discovery that preceded the disclosure of structural information (see below), we subsequently identified BMS-79005
Potent Inhibitors of Hepatitis C Virus NS3 Protease: Employment of a Difluoromethyl Group as a Hydrogen-Bond Donor
The
design and synthesis of potent, tripeptidic acylsulfonamide
inhibitors of HCV NS3 protease that contain a difluoromethyl cyclopropyl
amino acid at P1 are described. A cocrystal structure of <b>18</b> with a NS3/4A protease complex suggests the presence of a H-bond
between the polarized C–H of the CHF<sub>2</sub> moiety and
the backbone carbonyl of Leu135 of the enzyme. Structure–activity
relationship studies indicate that this H-bond enhances enzyme inhibitory
potency by 13- and 17-fold compared to the CH<sub>3</sub> and CF<sub>3</sub> analogues, respectively, providing insight into the deployment
of this unique amino acid
Discovery and Early Clinical Evaluation of BMS-605339, a Potent and Orally Efficacious Tripeptidic Acylsulfonamide NS3 Protease Inhibitor for the Treatment of Hepatitis C Virus Infection
The discovery of BMS-605339 (<b>35</b>), a tripeptidic inhibitor of the NS3/4A enzyme, is described.
This compound incorporates a cyclopropylÂacylsulfonamide moiety
that was designed to improve the potency of carboxylic acid prototypes
through the introduction of favorable nonbonding interactions within
the S1′ site of the protease. The identification of <b>35</b> was enabled through the optimization and balance of critical properties
including potency and pharmacokinetics (PK). This was achieved through
modulation of the P2* subsite of the inhibitor which identified the
isoquinoline ring system as a key template for improving PK properties
with further optimization achieved through functionalization. A methoxy
moiety at the C6 position of this isoquinoline ring system proved
to be optimal with respect to potency and PK, thus providing the clinical
compound <b>35</b> which demonstrated antiviral activity in
HCV-infected patients
Discovery of a Potent Acyclic, Tripeptidic, Acyl Sulfonamide Inhibitor of Hepatitis C Virus NS3 Protease as a Back-up to Asunaprevir with the Potential for Once-Daily Dosing
The
discovery of a back-up to the hepatitis C virus NS3 protease inhibitor
asunaprevir (<b>2</b>) is described. The objective of this work
was the identification of a drug with antiviral properties and toxicology
parameters similar to <b>2</b>, but with a preclinical pharmacokinetic
(PK) profile that was predictive of once-daily dosing. Critical to
this discovery process was the employment of an ex vivo cardiovascular
(CV) model which served to identify compounds that, like <b>2</b>, were free of the CV liabilities that resulted in the discontinuation
of BMS-605339 (<b>1</b>) from clinical trials. Structure–activity
relationships (SARs) at each of the structural subsites in <b>2</b> were explored with substantial improvement in PK through modifications
at the P1 site, while potency gains were found with small, but rationally
designed structural changes to P4. Additional modifications at P3
were required to optimize the CV profile, and these combined SARs
led to the discovery of BMS-890068 (<b>29</b>)