221 research outputs found

    Manfaat Retribusi TPI Terhadap Pendapatan Nelayan Di PPN Pekalongan : Sebuah Tinjauan Kebijakan

    Get PDF
    Pekalongan Archipelagic Fishing Port is one of many ports which it has not executed appeal wipping out of fisheries retribution include fish auction fee. Objectives of this research are analysis implementation of auction fee policy and its benefit for fishermen income on Pekalongan Archipelagic Fishing Port. Methods that it used on this research were study case. This research used analysis of both qualitative and quantitative approach. Results of this research explained that fish auction fee referred to Perda No 12 in 2009. Fish auction fee is allocated both routine and incidental every year. Each fishermen who landed fish felt receiving benefit, but it were not equal which they were pay. If fish auction fee is stopped, operation of fish auction will be depend on both local government budget and particular alocation fund from center government.Key word : benefit, income, fish auction fe

    Exome-wide DNA capture and next generation sequencing in domestic and wild species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.</p> <p>We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (<it>Bos taurus</it>) to capture (enrich for), and subsequently sequence, thousands of exons of <it>B. taurus</it>, <it>B. indicus</it>, and <it>Bison bison </it>(wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits.</p> <p>Results</p> <p>We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the <it>B. taurus </it>genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes.</p> <p>Conclusions</p> <p>This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.</p

    Mitral regurgitation as a phenotypic manifestation of nonphotosensitive trichothiodystrophy due to a splice variant in MPLKIP

    Get PDF
    Background: Nonphotosensitive trichothiodystrophy (TTDN) is a rare autosomal recessive disorder of neuroectodermal origin. The condition is marked by hair abnormalities, intellectual impairment, nail dystrophies and susceptibility to infections but with no UV sensitivity. Methods: We identified three consanguineous Pakistani families with varied TTDN features and used homozygosity mapping, linkage analysis, and Sanger and exome sequencing in order to identify pathogenic variants. Haplotype analysis was performed and haplotype age estimated. A splicing assay was used to validate the effect of the MPLKIP splice variant on expression. Results: Affected individuals from all families exhibit several TTDN features along with a heart-specific feature, i.e. mitral regurgitation. Exome sequencing in the probands from families ED168 and ED241 identified a homozygous splice mutation c.339 + 1G > A within MPLKIP. The same splice variant co-segregates with TTDN in a third family ED210. The MPLKIP splice variant was not found in public databases, e.g. the Exome Aggregation Consortium, and in unrelated Pakistani controls. Functional analysis of the splice variant confirmed intron retention, which leads to protein truncation and loss of a phosphorylation site. Haplotype analysis identified a 585.1-kb haplotype which includes the MPLKIP variant, supporting the existence of a founder haplotype that is estimated to be 25,900 years old. Conclusion: This study extends the allelic and phenotypic spectra of MPLKIP-related TTDN, to include a splice variant that causes cardiomyopathy as part of the TTDN phenotype

    Mosaicism of the UDP-Galactose Transporter SLC35A2 Causes a Congenital Disorder of Glycosylation

    Get PDF
    Biochemical analysis and whole-exome sequencing identified mutations in the Golgi-localized UDP-galactose transporter SLC35A2 that define an undiagnosed X-linked congenital disorder of glycosylation (CDG) in three unrelated families. Each mutation reduced UDP-galactose transport, leading to galactose-deficient glycoproteins. Two affected males were somatic mosaics, suggesting that a wild-type SLC35A2 allele may be required for survival. In infancy, the commonly used biomarker transferrin showed abnormal glycosylation, but its appearance became normal later in childhood, without any corresponding clinical improvement. This may indicate selection against cells carrying the mutant allele. To detect other individuals with such mutations, we suggest transferrin testing in infancy. Here, we report somatic mosaicism in CDG, and our work stresses the importance of combining both genetic and biochemical diagnoses

    The 4D Nucleome Project [preprint]

    Get PDF
    The spatial organization of the genome and its dynamics contribute to gene expression and cellular function in normal development as well as in disease. Although we are increasingly well equipped to determine a genome\u27s sequence and linear chromatin composition, studying the three-dimensional organization of the genome with high spatial and temporal resolution remains challenging. The 4D Nucleome Network aims to develop and apply approaches to map the structure and dynamics of the human and mouse genomes in space and time with the long term goal of gaining deeper mechanistic understanding of how the nucleus is organized. The project will develop and benchmark experimental and computational approaches for measuring genome conformation and nuclear organization, and investigate how these contribute to gene regulation and other genome functions. Further efforts will be directed at applying validated experimental approaches combined with biophysical modeling to generate integrated maps and quantitative models of spatial genome organization in different biological states, both in cell populations and in single cells
    corecore