102 research outputs found

    The modulation of topoisomerase I-mediated DNA cleavage and the induction of DNA–topoisomerase I crosslinks by crotonaldehyde-derived DNA adducts

    Get PDF
    Crotonaldehyde is a representative α,β-unsaturated aldehyde endowed of mutagenic and carcinogenic properties related to its propensity to react with DNA. Cyclic crotonaldehyde-derived deoxyguanosine (CrA-PdG) adducts can undergo ring opening in duplex DNA to yield a highly reactive aldehydic moiety. Here, we demonstrate that site-specifically modified DNA oligonucleotides containing a single CrA-PdG adduct can form crosslinks with topoisomerase I (Top1), both directly and indirectly. Direct covalent complex formation between the CrA-PdG adduct and Top1 is detectable after reduction with sodium cyanoborohydride, which is consistent with the formation of a Schiff base between Top1 and the ring open aldehyde form of the adduct. In addition, we show that the CrA-PdG adduct alters the cleavage and religation activities of Top1. It suppresses Top1 cleavage complexes at the adduct site and induces both reversible and irreversible cleavage complexes adjacent to the CrA-PdG adduct. The formation of stable DNA–Top1 crosslinks and the induction of Top1 cleavage complexes by CrA-PdG are mutually exclusive. Lastly, we found that crotonaldehyde induces the formation of DNA–Top1 complexes in mammalian cells, which suggests a potential relationship between formation of DNA–Top1 crosslinks and the mutagenic and carcinogenic properties of crotonaldehyde

    Plant 45S rDNA Clusters Are Fragile Sites and Their Instability Is Associated with Epigenetic Alterations

    Get PDF
    Our previous study demonstrated that 45S ribosomal DNA (45S rDNA) clusters were chromosome fragile sites expressed spontaneously in Lolium. In this study, fragile phenotypes of 45S rDNA were observed under aphidicolin (APH) incubation in several plant species. Further actinomycin D (ActD) treatment showed that transcriptional stress might interfere with chromatin packaging, resulting in 45S rDNA fragile expression. These data identified 45S rDNA sites as replication-dependent as well as transcription-dependent fragile sites in plants. In the presence of ActD, a dramatic switch to an open chromatin conformation and accumulated incomplete 5′ end of the external transcribed spacer (5′ETS) transcripts were observed, accompanied by decreased DNA methylation, decreased levels of histone H3, and increased histone acetylation and levels of H3K4me2, suggesting that these epigenetic alterations are associated with failure of 45S rDNA condensation. Furthermore, the finding that γ-H2AX was accumulated at 45S rDNA sites following ActD treatment suggested that the DNA damage signaling pathway was associated with the appearance of 45S rDNA fragile phenotypes. Our data provide a link between 45S rDNA transcription and chromatin-packaging defects and open the door for further identifying the molecular mechanism involved

    Topoisomerase I interaction with SV40 DNA in the presence and absence of camptothecin.

    No full text
    Camptothecin is an antitumor drug, which is a specific inhibitor of eukaryotic topoisomerase I. Enzyme inhibition is related to the stabilization of cleavable complexes between topoisomerase I and DNA. The genomic and DNA sequence localization of L1210 topoisomerase I-mediated DNA breaks produced by camptothecin were determined in the SV40 genome. DNA cleavage was predominantly single-stranded and localized in selective regions of the DNA. A major cleavage site was found at nucleotide 4995 on the coding strand in the early transcription region. The DNA sequence was determined at prominent cleavage sites (nucleotides 127 and 199 in the two 72 bp repeats and nucleotide 4955). A DNA consensus sequence 5'-GATG-3' was found in SV40 DNA. Cleavage occurred between the T and the G and topoisomerase I was linked to the 3'-DNA terminus at the T position. The sequence GATG is more frequent in the non transcribed strand of the early and late transcription of SV40 than in the transcribed strands. This finding is consistent with the role of topoisomerase I in transcription
    corecore