13 research outputs found

    Biotic homogenization in the availability of ornamental seeds of the native flora in Chile

    Get PDF
    Biotic homogenization is a global phenomenon, mainly in urban areas where exotic species are dominant, contributing to the loss of native biodiversity. Gardening native flora to promote local biodiversity is becoming a conservation practice in urban settings. Therefore, in this study, we analyzed the representation of the Chilean native flora in the Chilean and international ornamental flower seed market to know which native plant seeds are sold. We found that native seed are absent in the local market and that the totality of seed supply in the market corresponds to species of exotic origin, mainly from the Palearctic region (43%). However, surprisingly, many Chilean flower seeds are traded in the international market (approximately 6% of the total Chilean flora). This lack of availability of native seeds for local consumers constitutes a bottleneck for ecological restoration initiatives. It is consistent with the greater abundance of exotic species in urban green areas and supports the hypothesis of biocultural homogenization

    Senda Darwin Biological Station: Long-term ecological research at the interface between science and society

    Get PDF
    Indexación: Web of Science; Scielo.La Estación Biológica Senda Darwin (EBSD) constituye un centro de investigación inmerso en el paisaje rural del norte de la Isla de Chiloé (42º S), donde fragmentos del bosque siempreverde original coexisten con praderas de uso ganadero, turberas de Sphagnum, matorrales sucesionales, plantaciones de Eucalyptus y otras formaciones de origen antropogénico. Desde 1994 hemos realizado estudios de largo plazo centrados en algunas especies de plantas (e.g., Pilgerodendron uviferum D. Don) y animales (e.g., Aphrastura spinicauda Gmelin, Dromiciops gliroides [Thomas]) catalogados como amenazados o escasamente conocidos y en ecosistemas nativos de importancia regional y global (e.g., turberas de Sphagnum, bosque Valdiviano y Nordpatagónico). Las investigaciones han considerado las respuestas de las especies y de los ecosistemas frente al cambio antropogénico del paisaje y cambio climático, así como los efectos de diferentes formas de manejo. Este escenario es semejante al de otras regiones de Chile y Latinoamérica lo que da generalidad a nuestros resultados y modelos. En este período, investigadores asociados a la EBSD han producido más de un centenar de publicaciones en revistas nacionales e internacionales y 30 tesis de pre y postgrado. Entendiendo el papel clave de los seres humanos en los procesos ecológicos de la zona rural, la EBSD ha desarrollado un programa de educación ecológica y vinculación del avance científico con la sociedad local y nacional. La integración de la EBSD a la naciente red de Sitios de Estudios Socio-Ecológicos de Largo Plazo en Chile consolidará y fortalecerá la investigación básica y aplicada que realizamos para proyectarla hacia la siguiente década.Senda Darwin Biological Station (SDBS) is a field research center immersed in the rural landscape of northern Chiloé island (42º S), where remnant patches of the original evergreen forests coexist with open pastures, secondary successional shrublands, Sphagnum bogs, Eucalyptus plantations and other anthropogenic cover types, constituting an agricultural frontier similar to other regions in Chile and Latin America. Since 1994, we have conducted long-term research on selected species of plants (e.g., Pilgerodendron uviferum) and animals (e.g., Aphrastura spinicauda, Dromiciops glirioides) that are considered threatened, poorly known or important for their ecological functions in local ecosystems, and on ecosystems of regional and global relevance (e.g., Sphagnum bogs, North Patagonian and Valdivian rain forests). Research has assessed the responses of species and ecosystems to anthropogenic land-use change, climate change, and the impact of management. During this period, more than 100 scientific publications in national and international journals, and 30 theses (graduate and undergraduate) have been produced by scientists and students associated with SDBS. Because of our understanding of the key role that humans play in ecological processes at this agricultural frontier, since the establishment of SDBS we have been committed to creative research on the communication of science to society and ecological education. The integration of SDBS to the nascent Chilean network of long-term socio-ecological research will consolidate and strengthen basic and applied research to project our work into the next decade.http://ref.scielo.org/vbm4r

    Phenolic profiles of nectar and honey of Quillaja saponaria Mol. (Quillajaceae) as potential chemical markers

    No full text
    Quillaja saponaria Mol. (Quillajaceae) is one of the most important melliferous species in Chile, mainly as a source of monofloral honey. Honey made by A. mellifera presents biological activity against pathogens and antioxidant capacity associated with the presence of phenolic compounds deriving from the nectar, as a result of bee honey foraging. The aim of this study was to identify and quantify the phenolic compounds from the floral nectar of Q. saponaria and the honey made in apiaries in the central zone, and compare the composition of the chromatographic profiles of nectar and honey to known phenolic compounds. The results obtained by HPLC-DAD (high-performance liquid chromatography with diode-array detection) showed a similar profile of phenolic compounds, in which gallic acid, myricetin, rutin, quercetin and naringenin were identified. The phenolic compounds detected could be used as a reference for future studies for determining potential chemical markers of this honey, complementing the present identification of honeys by determining their botanical origin. The identification of bioindicators of the floral origins for honey of this species could provide added value to honey commercialization by certifying the botanical origin of their chemical features and biological attributes

    Native Useful Plants of Chile: A Review and Use Patterns

    No full text
    We compiled an inventory of the uses of the native flora of Chile by extracting uses cited in the literature until 2015. The inventory reported use citations for a total of 995 species of useful vascular plants (23% of Chile’s flora). These data were used to test the hypothesis that some plant families are overrepresented (overused) for some use categories. We used two statistical approaches: a Bayesian and an imprecise Dirichlet model (IDM). Families with a higher number of useful species are Asteraceae, Poaceae, Fabaceae, and Solanaceae. However, according to both the Bayesian and IDM approaches, the Grossulariaceae, Myrtaceae, Lamiaceae, Nothofagaceae, Salicaceae, Rosaceae, and Bromeliaceae are overrepresented. We found 501 species with medicinal uses, 228 with edible uses, 341 used for animal fodder, 300 considered ornamental, 102 used as dyes, 89 for ritual purposes, 75 for timber, and 51 species as a source of fiber. Over 43% of the useful species are endemic to Chile, and 4.7% are threatened. Our results indicate that the plant families of Chile with greater species richness are more likely to have a higher number of useful plants. However, some families tend to be overrepresented and others underrepresented within the different use categories, suggesting a non-random taxonomic distribution pattern of flora use

    Patterns of Traditional and Modern Uses of Wild Edible Native Plants of Chile: Challenges and Future Perspectives.

    No full text
    Wild Edible Plants (WEPs) still play a vital role in the subsistence of many traditional communities, while they are receiving increasing recognition in tackling food security and nutrition at the international level. This paper reviews the use patterns of native WEPs in Chile and discusses their role as future crops and sources of food products. We conducted an extensive literature review by assessing their taxonomic diversity, life forms, consumption and preparation methods, types of use (traditional and modern), and nutritional properties. We found that 330 native species were documented as food plants, which represent 7.8% of the total flora of Chile. These species belong to 196 genera and 84 families. The most diverse families are Asteraceae (34), Cactaceae (21), Fabaceae (21), Solanaceae (20) and Apiaceae (19), and the richest genera in terms of number of species are Solanum (9), Ribes (8), Berberis (7), Hypochaeris (7) and Oxalis (6). Perennial herbs are the predominant life form (40%), followed by shrubs (35%), trees (14%), and annual and biannual herbs (11%). Fruits (35.8%), roots (21.5%) and leaves (20.0%) are the parts of plants consumed the most. Nine different food preparation categories were identified, with ‘raw’ forming the largest group (43%), followed by ‘beverages’ (27%), ‘savoury preparations’ (27%), and ‘sweet’ (13%). Almost all native Chilean WEPs have reported traditional food uses, while only a few of them have contemporary uses, with food products mainly sold in local and specialised markets. Species’ richness, taxonomic diversity and family representation have similar patterns to those observed for the world flora and other countries where surveys have been carried out. Some Chilean native WEPs have the potential to become new crops and important sources of nutritious and healthy products in the food industry. However, there are still many gaps in knowledge about their nutritional, anti-nutritional and biochemical characteristics; future research is recommended to unveil their properties and potential uses in agriculture and the food industry

    Senda Darwin Biological Station: Long-term ecological research at the interface between science and society Estación Biológica Senda Darwin: Investigación ecológica de largo plazo en la interfase ciencia-sociedad

    No full text
    Senda Darwin Biological Station (SDBS) is a field research center immersed in the rural landscape of northern Chiloé island (42° S), where remnant patches of the original evergreen forests coexist with open pastures, secondary successional shrublands, Sphagnum bogs, Eucalyptus plantations and other anthropogenic cover types, constituting an agricultural frontier similar to other regions in Chile and Latin America. Since 1994, we have conducted long-term research on selected species of plants (e.g., Pilgerodendron uviferum) and animals (e.g., Aphrastura spinicauda, Dromiciops glirioides) that are considered threatened, poorly known or important for their ecological functions in local ecosystems, and on ecosystems of regional and global relevance (e.g., Sphagnum bogs, North Patagonian and Valdivian rain forests). Research has assessed the responses of species and ecosystems to anthropogenic land-use change, climate change, and the impact of management. During this period, more than 100

    Assessing Ecological Indicators for Remnant Vegetation Strips as Functional Biological Corridors in Chilean Vineyards

    No full text
    Mediterranean central Chile is globally recognized as a hotspot for terrestrial biodiversity due to its high endemism and massive habitat loss. However, within the rural landscape of central Chile, significant extents of natural areas remain, especially on less productive, steep slopes, and vegetation strips extending from the surrounding hills to agricultural areas. Accordingly, vegetation strips or corridors, within lowland farms, constitute key elements to support the conservation of biodiversity in rural landscapes. To assess the ecological performance of corridors in 22 commercials vineyards in central Chile, we characterized them in terms of width-, length-, area-, and perimeter-to-area ratios, as well as the number of connections with natural areas. Based on a set of previously defined ecological indicators (species, functional groups, and structural components), we compared their occurrence in corridors within vineyards and in the surrounding natural areas. We evaluated the effects of corridor attributes on the occurrence of the selected ecological indicators, using a generalized linear mixed model with each vineyard as a random factor. The area, width, and length of vegetation corridors varied widely (1.2–86.3 ha, 10.5–95 m, and 380–5000 m, respectively). We found significant differences in the occurrence of indicators between corridors and natural areas. All sampled ecological indicators in corridors showed a negative relationship with the distance to the nearest natural area. Vegetation strips within vineyards represent important opportunities for biodiversity conservation that significantly enhance habitat quality in the agricultural landscape for biodiversity and habitat connectivity
    corecore