8 research outputs found

    Low cost integration of IoT technologies for building automation

    Get PDF
    Internet of Things (IoT) envisages a reality in which people and objects are interconnected in such a way that a series of services, previously unthinkable, become real. The impact of IoT technologies is already tangible in industry, particularly under the Industry 4.0 initiative, but yet far to be fully exploited in other areas, such as building automation. This paper highlights the importance of using IoT and other emergent technologies to develop building automation applications that serves as base in smart cities, particularly supporting the interoperability among home automation solutions provided by different manufacturers. For this purpose, a low cost IoT enabler solution for building automation is presented, based on the use of cyber-physical systems, as backbone to integrate different IoT technologies and building automation technologies. The proposed approach was successfully implemented in an open space laboratory.info:eu-repo/semantics/publishedVersio

    Design and Implementation of a Wireless Sensor and Actuator Network to Support the Intelligent Control of Efficient Energy Usage

    No full text
    Energy saving has become a major concern for the developed society of our days. This paper presents a Wireless Sensor and Actuator Network (WSAN) designed to provide support to an automatic intelligent system, based on the Internet of Things (IoT), which enables a responsible consumption of energy. The proposed overall system performs an efficient energetic management of devices, machines and processes, optimizing their operation to achieve a reduction in their overall energy usage at any given time. For this purpose, relevant data is collected from intelligent sensors, which are in-stalled at the required locations, as well as from the energy market through the Internet. This information is analysed to provide knowledge about energy utilization, and to improve efficiency. The system takes autonomous decisions automatically, based on the available information and the specific requirements in each case. The proposed system has been implanted and tested in a food factory. Results show a great optimization of energy efficiency and a substantial improvement on energy and costs savings

    Physical Agents and RFID for the implementation of the Shop Floor Control on a Distribution Centre.

    Get PDF
    [ES] En la última década, la aplicación de la tecnología de sistemas multiagente para el control en planta ha generado gran expectación por parte de profesionales e investigadores. El uso de esta tecnología, por la propia definición de los agentes como: sistemas reactivos (capaces de responder ante cambios en el entorno), proactivos (generando iniciativas dirigidas a alcanzar sus objetivos), autónomos y con capacidades sociales (la toma de decisiones está consensuada), ha propiciado la aparición de gran cantidad de iniciativas. Lamentablemente, la mayoría de estas iniciativas se reducen únicamente a definiciones de agentes, declaración de intenciones o simulaciones, o bien constituyen propuestas demasiado ambiciosas, lo que ha impedido que la industria adopte este tipo de soluciones. Este artículo presenta una aproximación para la implementación de los agentes encargados del control en planta, conocidos como agentes físicos u holones, sobre una plataforma experimental que representa las instalaciones de un centro de distribución automatizado. Se ha tomado como punto de partida el concepto de holón, pero se ha adaptado de manera que la toma de decisiones tenga lugar en el controlador industrial. El trabajo se ha centrado en alcanzar una toma de decisiones en planta inteligente. Se definen dos tipos de agentes y se ha modelado, mediante redes de Petri, la forma en la que interaccionan estos agentes en la toma de decisiones que surgen en el funcionamiento de una planta inteligente. Finalmente los modelos se han implementado sobre autómatas programables.[EN] The application of the multi-agent systems technology for shop-floor control has generated great expectations among professionals and researchers in the last decade. The use of this technology conveys, by the definition of the agents, reactive systems (able to respond to changes), proactive systems (their behavior is oriented towards the achievement of predefined objectives), autonomy, and social skills (consensual decision making), causing the emergence of many initiatives. Unfortunately, most references on this field are mainly concerned with: the definition of agents, statements of intent, simulations or rather ambitious proposals; which prevents industry from adopting this technology.This paper presents an approach to implement the agents in charge of the shop floor control, known as physical agents or holons, on a test bench that represent the installations of an automated distributed center. The concept of holon has been adapted to keep the decision making in the industrial controller. The work is focused on reach an intelligent decision making at the shop floor. For what, two kind of agents have been defined, and the decision makings at shop floor have been modelled by means of Petri Nets. Finally, models have been implemented over programmable logic controllers.Este trabajo ha sido desarrollado con el respaldo del Ministerio Español de Economía y Competitividad mediante la ayuda de referencia DPI2012-35227 al proyecto de título: “Sipail: Seguimiento Integral en Producción, Automatización Industrial y Logística”.De Las Morenas, J.; García, A.; Martínez, F.; García Ansola, P. (2015). Implementación del Control en Planta de un Centro de Distribución Automatizado mediante Agentes Físicos y RFID. Revista Iberoamericana de Automática e Informática industrial. 12(1):25-35. https://doi.org/10.1016/j.riai.2014.11.002OJS2535121Brennan, R., Gruver, W., Hall, K., 2011. Forward-Special Issue on Industrial Applications of Holonic Manufacturing Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 41, 1-3.Brusey, J., McFarlane, D.C., Thorne, A., 2008. Nonautonomous Elementary Net Systems and Their Application to Programmable Logic Control. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 38, 397-409.Bussmann, S., Jennings, N., Wooldridge, M.J., 2004. Multiagent systems for manufacturing control: a design methodology. Springer-Verlag New York Inc.Encinas, J., García, A., de las Morenas, J., 2012. Improvements in operations management applied to a 3D simulation connected to a physical platform. Journal of Intelligent Manufacturing 23, 845-856.García, A., Cenjor, A., 2007. Sistema Heterárquico de Control Basado en Agentes para Sistemas de Fabricación. Revista iberoamericana de automática e informática industrial (RIAI) 4, 83.García Ansola, P., de las Morenas, J., García, A., Otamendi, J., 2011. Distributed decision support system for airport ground handling management using WSN and MAS. Engineering Applications of Artificial Intelligence 25, 544-553.Leitão, P., 2009. Agent-based distributed manufacturing control: A state-of- the-art survey. Engineering Applications of Artificial Intelligence 22, 979-991.Leitão, P., 2011. A holonic disturbance management architecture for flexible manufacturing systems. International Journal of Production Research 49, 1269-1284.Mařík, V., Fletcher, M., Pěchouček, M., 2002. Holons & agents: recent developments and mutual impacts. Multi-Agent Systems and Applications II, 89-106.McFarlane, D., Giannikas, V., Wong, A.Y., Harrison, M., 2013. Intelligent Products in the Supply Chain - 10 Years on, Service Orientation in Holonic and Multi Agent Manufacturing and Robotics. Springer Berlin Heidelberg, pp. 103-117.Mendes, J.M., Leitão, P., Colombo, A.W., Restivo, F., 2008. Service-oriented control architecture for reconfigurable production systems, 6th IEEE International Conference on Industrial Informatics., pp. 744-749.Moreira, M.V., Basilio, J.C., 2011. Bridging the Gap Between Design and Implementation of Discrete-Event Controllers. Automation Science and Engineering, IEEE Transactions on 11, 48-65.Murata, T., 1989. Petri nets: Properties, analysis and applications. Proceedings of the Ieee 77, 541-580.Pechouček, M., Mařík, V., 2008. Industrial deployment of multi-agent technologies: review and selected case studies. Autonomous Agents and Multi-Agent Systems 17, 397-431.Sallez, Y., Berger, T., Raileanu, S., Chaabane, S., Trentesaux, D., 2010. Semi- heterarchical control of FMS: From theory to application. Engineering Applications of Artificial Intelligence 23, 1314-1326.Soylemezoglu, A., Zawodniok, M., Cha, K., Hall, D., Birt, J., Saygin, C., Sarangapani, J., 2006. A testbed architecture for Auto-ID technologies. Assembly Automation 26, 127-136.Sujono, S., Lashkari, R.S., 2007. A multi-objective model of operation allocation and material handling system selection in FMS design. International Journal of Production Economics 105, 116-133.Theiss, S., Vasyutynskyy, V., Kabitzsch, K., 2009. Software Agents in Industry: A Customized Framework in Theory and Praxis. IEEE Transactions on Industrial Informatics 5, 147-156.Thorne, A., McFarlane, D., Hodges, S., Smith, S., Harrison, M., Brusey, J., Garcia, A., 2003. The AutoID Automation Laboratory: Building Tomorrow's Systems Today. Auto-ID Centre White Papers. University of Cambridge.Uzam, M., Jones, A.H., Ajlouni, N., 1996. Conversion of Petri net controllers for manufacturing systems into ladder logic diagrams, Emerging Technologies and Factory Automation, 1996. EFTA ‘96. Proceedings., 1996 IEEE Conference on, pp. 649-655 vol.642.Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P., 1998. Reference architecture for holonic manufacturing systems: PROSA. Computers in Industry 37, 255-274.Vrba, P., Macurek, F., Mařík, V., 2008. Using radio frequency identification in agent-based control systems for industrial applications. Engineering Applications of Artificial Intelligence 21, 331-342.Vrba, P., Tichý, P., Mařík, V., Hall, K.H., Staron, R.J., Maturana, F.P., Kadera, P., 2011. Rockwell Automation's Holonic and Multiagent Control Systems Compendium. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 41, 14-30.Vyatkin, V., 2011. IEC 61499 as Enabler of Distributed and Intelligent Automation: State-of-the-Art Review. IEEE Transactions on Industrial Informatics, 1-1.Wooldridge, M., Jennings, N., 1995. Intelligent agents: Theory and practice. Knowledge Engineering Review 10, 115-152.Wooldridge, M.J., 2002. An introduction to multiagent systems. Wiley.Zacharewicz, G., Deschamps, J.-C., Francois, J., 2011. Distributed simulation platform to design advanced RFID based freight transportation systems. Computers in Industry 66, 597-612

    Security experiences in IoT based applications for building and factory automation

    No full text
    Industry 4.0 and Industrial Internet of Things (IIoT) are promoting the connection of millions of devices, that once were seen as unconnectable, into a huge network, to be used in a large number of applications, from autonomous vehicles to industrial control systems, passing through building automation systems. These paradigm rely on the adoption of Cyber Physical Systems complemented with Internet of Things (IoT) technologies and artificial intelligence techniques. These type of systems are responsible for collecting, processing and exchanging a vast amount of data, and for that reason, it is imperative to assure data integrity and protection against malicious modifications and attacks to ensure a safe and reliable operation. Data thefts and cyber attacks in general represent a significant danger, however, cyber attacks on IoT systems can be specially critical due to their proximity with humans, enhancing the risk of physical damage. This paper highlights the importance of securing these systems, pursuing a safer operation, having in mind the amount of security vulnerabilities found in embedded devices. For this purpose, this article studies possible security threats and weakness in two case studies coming from different IoT domains, i.e. building automation and factory automation, while seeking for solutions to improve these systems’ security.info:eu-repo/semantics/publishedVersio

    Electrical Modelling and Mismatch Effects of Thermoelectric Modules on Performance of a Thermoelectric Generator for Energy Recovery in Diesel Exhaust Systems

    No full text
    Thermoelectric generators harvesting energy from exhaust gases usually present a temperature mismatch between modules, due to the gradual cooling of the gases along the flow direction. The way modules that produce unequal voltages are connected has a deep impact on the overall power output. A further step in the prediction of thermoelectric production is to consider the complete layout of the thermoelectric modules and not consider them as isolated systems. In this work, a model to predict the electric behavior of thermoelectric generators for automotive applications at different points of operation is presented. The model allows testing of serial-parallel connection configurations. The results present good agreement with experimental data. This model could be used on similar light duty vehicles with similar engines as the engine used in this work and using similar configuration of thermoelectric generators. Simulated scenarios considering realistic operating conditions in a light duty vehicle allow stating that thermoelectric modules interconnection under heterogenous thermal surface conditions has a significant negative effect (more than 17%) on electric energy production. Moreover, the proposed model shows the need to protect the electric circuit of the thermoelectric generator to avoid the negative effect of possible malfunction of some thermoelectric modules

    Competencias emprendedoras de los estudiantes de la Universidad de Castilla-La Mancha (libro completo)

    No full text
    Esta edición recoge los resultados de cuarenta profesores inscritos en la Red de Profesores Emprendedores de la Universidad de Castilla-La Mancha que trabaja desde el año 2016 en la formación de los profesores en competencias para el emprendimiento, para que a su vez realicen la labor en las aulas de identificar los perfiles emprendedores, que, entre sus estudiantes, pueden darse dentro del aula. Entre los objetivos del proyecto podemos mencionar los siguientes: capacitar a los docentes para atender e identificar a los estudiantes con iniciativas emprendedoras; promover actividades formativas y de estimulación del emprendimiento entre los estudiantes de su centro; apoyar a la organización y difusión de actividades de emprendimiento promovidas por el Vicerrectorado de Transferencia e Innovación; identificar trabajos fin de grado o fin de máster susceptibles de transferirse a la sociedad; identificar trabajos fin de grado o fin de máster que puedan convertirse en un proyecto empresarial (start-up de estudiantes o egresados); apoyar y tutelar a las junior empresas relacionadas con el centro. Se diseñaron dos grupos de actividades a llevar a cabo para la consecución de dichos objetivos. Por un lado, la formación del profesorado en aspectos relacionados con el emprendimiento. Por otro, la evaluación y diagnóstico del carácter emprendedor de nuestros estudiantes mediante la realización y análisis de un cuestionario que permitiera evaluar competencias específicas y transversales, relacionadas con el emprendimiento. De la realización de este último grupo de actividades se derivan los resultados que se exponen a continuación
    corecore