3,348 research outputs found

    Powerful and interpretable behavioural features for quantitative phenotyping of C. elegans

    Get PDF
    Behaviour is a sensitive and integrative readout of nervous system function and therefore an attractive measure for assessing the effects of mutation or drug treatment on animals. Video data provide a rich but high-dimensional representation of behaviour, and so the first step of analysis is often some form of tracking and feature extraction to reduce dimensionality while maintaining relevant information. Modern machine-learning methods are powerful but notoriously difficult to interpret, while handcrafted features are interpretable but do not always perform as well. Here, we report a new set of handcrafted features to compactly quantify Caenorhabditis elegans behaviour. The features are designed to be interpretable but to capture as much of the phenotypic differences between worms as possible. We show that the full feature set is more powerful than a previously defined feature set in classifying mutant strains. We then use a combination of automated and manual feature selection to define a core set of interpretable features that still provides sufficient power to detect behavioural differences between mutant strains and the wild-type. Finally, we apply the new features to detect time-resolved behavioural differences in a series of optogenetic experiments targeting different neural subsets

    The Complete Calibration of the Color-Redshift Relation (C3R2) Survey: Survey Overview and Data Release 1

    Get PDF
    A key goal of the Stage IV dark energy experiments Euclid, LSST and WFIRST is to measure the growth of structure with cosmic time from weak lensing analysis over large regions of the sky. Weak lensing cosmology will be challenging: in addition to highly accurate galaxy shape measurements, statistically robust and accurate photometric redshift (photo-z) estimates for billions of faint galaxies will be needed in order to reconstruct the three-dimensional matter distribution. Here we present an overview of and initial results from the Complete Calibration of the Color-Redshift Relation (C3R2) survey, designed specifically to calibrate the empirical galaxy color-redshift relation to the Euclid depth. These redshifts will also be important for the calibrations of LSST and WFIRST. The C3R2 survey is obtaining multiplexed observations with Keck (DEIMOS, LRIS, and MOSFIRE), the Gran Telescopio Canarias (GTC; OSIRIS), and the Very Large Telescope (VLT; FORS2 and KMOS) of a targeted sample of galaxies most important for the redshift calibration. We focus spectroscopic efforts on under-sampled regions of galaxy color space identified in previous work in order to minimize the number of spectroscopic redshifts needed to map the color-redshift relation to the required accuracy. Here we present the C3R2 survey strategy and initial results, including the 1283 high confidence redshifts obtained in the 2016A semester and released as Data Release 1.Comment: Accepted to ApJ. 11 pages, 5 figures. Redshifts can be found at http://c3r2.ipac.caltech.edu/c3r2_DR1_mrt.tx

    Joint Hybrid Precoder and Combiner Design for mmWave Spatial Multiplexing Transmission

    Full text link
    Millimeter-wave (mmWave) communications have been considered as a key technology for future 5G wireless networks because of the orders-of-magnitude wider bandwidth than current cellular bands. In this paper, we consider the problem of codebook-based joint analog-digital hybrid precoder and combiner design for spatial multiplexing transmission in a mmWave multiple-input multiple-output (MIMO) system. We propose to jointly select analog precoder and combiner pair for each data stream successively aiming at maximizing the channel gain while suppressing the interference between different data streams. After all analog precoder/combiner pairs have been determined, we can obtain the effective baseband channel. Then, the digital precoder and combiner are computed based on the obtained effective baseband channel to further mitigate the interference and maximize the sum-rate. Simulation results demonstrate that our proposed algorithm exhibits prominent advantages in combating interference between different data streams and offer satisfactory performance improvement compared to the existing codebook-based hybrid beamforming schemes

    Cosmological Horizons, Uncertainty Principle and Maximum Length Quantum Mechanics

    Full text link
    The cosmological particle horizon is the maximum measurable length in the Universe. The existence of such a maximum observable length scale implies a modification of the quantum uncertainty principle. Thus due to non-locality of quantum mechanics, the global properties of the Universe could produce a signature on the behaviour of local quantum systems. A Generalized Uncertainty Principle (GUP) that is consistent with the existence of such a maximum observable length scale lmaxl_{max} is ΔxΔp2  11αΔx2\Delta x \Delta p \geq \frac{\hbar}{2}\;\frac{1}{1-\alpha \Delta x^2} where α=lmax2(H0/c)2\alpha = l_{max}^{-2}\simeq (H_0/c)^2 (H0H_0 is the Hubble parameter and cc is the speed of light). In addition to the existence of a maximum measurable length lmax=1αl_{max}=\frac{1}{\sqrt \alpha}, this form of GUP implies also the existence of a minimum measurable momentum pmin=334αp_{min}=\frac{3 \sqrt{3}}{4}\hbar \sqrt{\alpha}. Using appropriate representation of the position and momentum quantum operators we show that the spectrum of the one dimensional harmonic oscillator becomes Eˉn=2n+1+λnαˉ\bar{\mathcal{E}}_n=2n+1+\lambda_n \bar{\alpha} where Eˉn2En/ω\bar{\mathcal{E}}_n\equiv 2E_n/\hbar \omega is the dimensionless properly normalized nthn^{th} energy level, αˉ\bar{\alpha} is a dimensionless parameter with αˉα/mω\bar{\alpha}\equiv \alpha \hbar/m \omega and λnn2\lambda_n\sim n^2 for n1n\gg 1 (we show the full form of λn\lambda_n in the text). For a typical vibrating diatomic molecule and lmax=c/H0l_{max}=c/H_0 we find αˉ1077\bar{\alpha}\sim 10^{-77} and therefore for such a system, this effect is beyond reach of current experiments. However, this effect could be more important in the early universe and could produce signatures in the primordial perturbation spectrum induced by quantum fluctuations of the inflaton field.Comment: 11 pages, 7 Figures. The Mathematica file that was used for the production of the Figures may be downloaded from http://leandros.physics.uoi.gr/maxlenqm
    corecore