Millimeter-wave (mmWave) communications have been considered as a key
technology for future 5G wireless networks because of the orders-of-magnitude
wider bandwidth than current cellular bands. In this paper, we consider the
problem of codebook-based joint analog-digital hybrid precoder and combiner
design for spatial multiplexing transmission in a mmWave multiple-input
multiple-output (MIMO) system. We propose to jointly select analog precoder and
combiner pair for each data stream successively aiming at maximizing the
channel gain while suppressing the interference between different data streams.
After all analog precoder/combiner pairs have been determined, we can obtain
the effective baseband channel. Then, the digital precoder and combiner are
computed based on the obtained effective baseband channel to further mitigate
the interference and maximize the sum-rate. Simulation results demonstrate that
our proposed algorithm exhibits prominent advantages in combating interference
between different data streams and offer satisfactory performance improvement
compared to the existing codebook-based hybrid beamforming schemes