22 research outputs found

    Improving the Probiotics Viability and Quality Characteristics of Yoghurt Enriched with Barley Bran

    Get PDF
    Results of current study reported that increase in addition of barley bran in yogurt containing bifidobacterium BB-12, L. bulgaricus and S. thermophillus significantly influence the probiotics numbers. Samples fortified with barley bran has more numbers of probiotics as compare to control samples during storage. Correlation between concentration of barley bran and bifidobacterium was optimistic. Maximum numbers of L. bulgaricus and bifidobacterium were found in yogurt containing 1.5%25 barley bran. Addition of barley bran increased the acidity percentage of yogurt and decreased viscosity value during 3 weeks of storage. Sensory scores of functional yogurt decreased with increased in barley bran. However sensory score of sample with (0.5%25 barley bran) did not significantly changed from control sample and number of bifidobacterium bacteria in this sample was higher than minimum standard level (log106 CFU%252Fg) of world health organization (WHO). Syneresis value of control sample was significantly reduced with storage period but yogurt sample enriched with different concentration of barley bran were showed minimum decreased in syneresis percentage of yogurt. Barley bran level 1%25 can be added to yogurt successfully. Barley bran enrichment increased the color parameters of yogurt during storage this may be due to the results of blueness color of barley bran

    In vitro release and cytotoxicity study of encapsulated sulfasalazine within LTSP micellar/ liposomal and TSP micellar/niosomal nano-formulations

    Get PDF
    The micelles/liposome formulation for the first time has been constructed via thin-film hydration method containing soy lecithin (L), tween 80 (T), squalene (S), and polyvinyl alcohol (P) (LTSP nanoparticles). Similar ingredients except for lecithin were used for preparing micellar/niosomal vesicular SSZ nano formulation (TSP nanoparticles). The percent drug loading and encapsulation efficiency of SSZ was 7.39% and 98.5 ± 0.3 % for the 7.5:100 (w/w) ratio of SSZ: total weight of LTSP, while the percent drug loading and encapsulation efficiency of SSZ was 4.7% and 62.85 ± 0.3 % in the TSP nano formulation. Dynamic light scattering (DLS) and trans- mission electron microscopy (TEM) results showed that both formulations formed spherical micelles and vesicles with globule sizes of 25 ± 1.2 nm and 100 ± 20.5 nm respectively. The cell toxicity evaluations showed that both LTSP and TSP nano formulations without drug were nontoxic (at the range of this experiment) for Human Dermal Fibroblasts (HDF) as a normal cell line, but SSZ loaded nano formulation exhibited increased cell toxicity with half-maximal inhibitory concentration (IC50) of 940 mM for SSZ alone to near 240 mM for SSZ loaded nano formulation (approximately four times). In vitro release experiments exhibited sustained release of SSZ from both nano formulations. The LTSP micellar/liposomal and TSP micellar/niosomal nano formulation for SSZ delivery can be considered as appropriate approaches for improving its bioavailability and probably they are good candidates for future clinical investigations

    Advanced liquid and gas NMR methods for probing topical materials

    No full text
    Abstract The present thesis exploits advanced liquid and gas NMR methods for the characterization of various interesting materials. The methods used to study the structural properties of thermally modified wood, ionic liquids, cements, shales, and porous organic cages include MRI, NMR cryoporometry, Laplace NMR, multidimensional Laplace NMR, as well as ¹²⁹Xe and ¹⁹F NMR. The commonality factor in all the studies is the usage of either inherent or introduced liquid or gas molecules to probe the topical materials. The MRI method was utilized to visualize the water absorption phenomena in the thermally modified pine wood. High-resolution images made it possible to observe the spatial distribution of free water and the changes in the rate of absorption of water in wood samples modified at different temperatures. The images also helped to resolve the individual resin channels. T₂ maps enabled us to observe the changes in the relaxation values of free water in thermally modified wood as compared to their unmodified reference wood samples. The multidimensional Laplace NMR methods were exploited to study the structural and dynamical properties of a novel halogen-free, boron-based ionic liquid (hf-BIL). NMR self-diffusion (D) experiments showed the presence of two coexisting dynamic phases in hf-BIL. Multidimensional D − T₂ correlation experiments made it possible to determine the T₂ relaxation times of the slow and fast diffusing phases. T₂ − T₂ relaxation exchange measurements allowed quantifying the exchange rates of anions and cations between the phases. Moreover, the theoretical modeling of the experimental data revealed that the slow diffusing phase was composed of anion-cation aggregates, while the fast diffusing phase was comprised of free anions and cations. ¹²⁹Xe NMR analysis of the xenon adsorbed in the cements and shales helped us to determine their porous structures. The method exploits the high sensitivity of the chemical shift of ¹²⁹Xe to its local environment. The chemical shift value of ¹²⁹Xe enabled us to estimate the size of the mesopores in the cement samples. The exchange spectroscopy (EXSY) measurements were used to determine the exchange rates between the free gas and mesopores of the cement samples. ¹²⁹Xe NMR spectra of the shale samples provided information about pore sizes and paramagnetic compounds. ¹H NMR cryoporometry measurements of the shale samples immersed in acetonitrile made it possible to analyze the pore size distribution ranging from 10 to over 100 nm. Moreover, T₂ − T₂ exchange measurements helped us to quantify the exchange rates of acetonitrile in the shale samples. Xenon and SF₆ were used as internal reporters to gain versatile information on adsorption phenomena in the cage and window cavities of the crystalline porous organic cages. ¹²⁹Xe NMR analysis of the adsorbed xenon helped us to determine the diffusion coefficients and activation energy of diffusion as well as thermodynamic parameters. With the help of T₂ relaxation time values, it was possible to estimate the exchange rates between cage and window cavities. Chemical exchange saturation transfer (CEST) experiments resolved a window cavity site, which arises from crystal defects in porous organic cages. In addition, ¹⁹F NMR analysis made it possible to estimate the relaxation rates and diffusion coefficients of SF₆ gas in porous organic cages. Modelling of the T₁, T₂ and diffusion data confirmed that the cage to window exchange is the completely dominating mechanism for ¹²⁹Xe T₂ relaxation. T₁ relaxation is dominated by diffusion modulated dipole-dipole relaxation (DDinter) and chemical shift anisotropy (CSA) relaxation due to local cavity mobility. Whereas, in case of SF₆ T₂ data, the dominating mechanism is diffusion modulated dipole-dipole relaxation and for T₁ the local tumbling of SF₆ in cage cavity is the key dynamics behind the dipole-dipole and CSA mechanisms

    Monthly Average Solar Radiation and Angstrom-Prescott Model for Islamabad, Pakistan

    No full text
    For any solar energy utilization, it is essential to know the value of radiation on an hourly basis and monthly basis. Generally, for Islamabad, Pakistan, available data are limited, and it is difficult to correctly evaluate the harnessed solar energy. In this paper, the monthly average solar radiation of Islamabad on an hourly basis has been presented, as compared to the available yearly average data in the literature. Moreover, the Angstrom–Prescott constant for Islamabad, Pakistan, has been calculated. The proposed relation has the error of radiation less than 1.5%
    corecore