80 research outputs found

    Internal podalic version of second twin: Improving feet identification using a simulation model.

    Get PDF
    Podalic version and breech extraction require high obstetrical expertise. Identifying fetal extremities is the first crucial step for trainees. When this skill is not polished enough, it increases the inter-twin delivery interval and can even jeopardize the whole manoeuver. We present a model for simulating and training this specific skill, with obstetrical mannequin, and 3D printed hands and feet. Five feet and five hands (five rights and five lefts of each one) were printed in 3D after initial ultrasound acquisition of a near term fetus. Each foot and hand, was individually set in a condom filled with 100 cc of water and closed with a knot. A Sophie's Mum Birth Simulator Version 4.0 de MODEL-med was placed on the edge of the table. Each hand and foot was inserted into the pelvic mannequin. An evaluation of the students' skills using this model was performed. A significant reduction of the global mean to extract the first foot and all the feet was noticed at three month of interval. This model is an option to train and assess a crucial skill for version and breech extraction

    The miRNA pathway limits AGO1 availability during siRNA-mediated PTGS defense against exogenous RNA

    Get PDF
    In plants, most microRNAs (miRNAs) and several endogenous small interfering RNAs (siRNAs) bind to ARGONAUTE1 (AGO1) to regulate the expression of endogenous genes through post-transcriptional gene silencing (PTGS). AGO1 also participates in a siRNA-mediated PTGS defense response that thwarts exogenous RNA deriving from viruses and transgenes. Here, we reveal that plants supporting transgene PTGS exhibit increased levels of AGO1 protein. Moreover, increasing AGO1 levels either by mutating miRNA pathway components or, more specifically, by impairing miR168-directed regulation of AGO1 mRNA leads to increased PTGS efficiency, indicating that the miRNA pathway dampens the efficiency of PTGS, likely by limiting the availability of AGO1. We propose that during the transgene PTGS initiation phase, transgene siRNAs and endogenous siRNAs and miRNA compete to bind to AGO1, leading to a transient reduction in AGO1–miR168 complexes and a decline in AGO1 mRNA cleavage. The concomitant increase in AGO1 protein levels would facilitate the formation of AGO1–transgene siRNA complexes and the entry into the PTGS amplification phase. We suggest that the miRNA pathway imposes an important limitation on PTGS efficiency, which could help protect endogenous mRNAs from being routinely targeted by PTGS

    Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes

    Get PDF
    Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3' maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS

    Mutations in the Arabidopsis

    Full text link

    RDR2 Partially Antagonizes the Production of RDR6-Dependent siRNA in Sense Transgene-Mediated PTGS

    Get PDF
    Background: RNA-DEPENDENT RNA POLYMERASE6 (RDR6) and SUPPRESSOR of GENE SILENCING 3 (SGS3) are required for DNA methylation and post-transcriptional gene silencing (PTGS) mediated by 21-nt siRNAs produced by sense transgenes (S-PTGS). In contrast, RDR2, but not RDR6, is required for DNA methylation and TGS mediated by 24-nt siRNAs, and for cellto-cell spreading of IR-PTGS mediated by 21-nt siRNAs produced by inverted repeat transgenes under the control of a phloem-specific promoter. Principal Findings: In this study, we examined the role of RDR2 and RDR6 in S-PTGS. Unlike RDR6, RDR2 is not required for DNA methylation of transgenes subjected to S-PTGS. RDR6 is essential for the production of siRNAs by transgenes subjected to S-PTGS, but RDR2 also contributes to the production of transgene siRNAs when RDR6 is present because rdr2 mutations reduce transgene siRNA accumulation. However, the siRNAs produced via RDR2 likely are counteractive in wildtype plants because impairement of RDR2 increases S-PTGS efficiency at a transgenic locus that triggers limited silencing, and accelerates S-PTGS at a transgenic locus that triggers efficient silencing. Conclusions/Significance: These results suggest that RDR2 and RDR6 compete for RNA substrates produced by transgenes subjected to S-PTGS. RDR2 partially antagonizes RDR6 because RDR2 action likely results in the production of counteractiv
    corecore