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Fossils, including those that occasionally preserve decay-prone soft-tissues, are mostly 30 

made of minerals. Accessing their chemical composition provides unique insight into their 31 

past biology and/or the mechanisms by which they preserve, leading to a series of 32 

developments in chemical and elemental imaging. However, the mineral composition of 33 

fossils, particularly where soft-tissues are preserved, is often only inferred indirectly from 34 

elemental data, while X-ray diffraction that specifically provides phase identification 35 

received little attention. Here, we show the use of synchrotron radiation to generate not 36 

only X-ray fluorescence elemental maps of a fossil, but also mineralogical maps in 37 

transmission geometry using a two-dimensional area detector placed behind the fossil. This 38 

innovative approach was applied to millimetre-thick cross-sections prepared through 39 

three-dimensionally preserved fossils, as well as to compressed fossils. It identifies and 40 

maps mineral phases and their distribution at the microscale over centimetre-sized areas, 41 

benefitting from the elemental information collected synchronously, and further informs 42 

on texture (preferential orientation), crystallites size and local strain. Probing such 43 

crystallographic information is instrumental in defining mineralisation sequences, 44 

reconstructing the fossilisation environment, and constraining preservation biases. 45 

Similarly, this approach could potentially provide new knowledge on other 46 

(bio)mineralisation processes in environmental sciences. We also illustrate that 47 

mineralogical contrasts between fossil tissues and/or the encasing sedimentary matrix can 48 

be used to visualise hidden anatomies in fossils. 49 
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1. Introduction 53 

Fossils mostly consist of the mineralised remains or impressions of organisms. Biomineralised 54 

tissues such as invertebrate shells or vertebrate bones and teeth, which are highly resistant to 55 

decay, form the bulk of the fossil record (note that they usually undergo physico-chemically 56 

changes during fossilisation). Occasionally, decay-prone soft parts (e.g. muscles, nervous 57 

systems) or even entire soft-bodied organisms such as worms, jellyfish or squid are 58 

‘exceptionally’ preserved, offering us a more detailed view into the past than skeletal remains 59 

alone. Nonetheless, soft-tissues rarely survive as organic components. Instead, their preservation 60 

results from poorly constrained mineralisation processes such as the permeation of tissues by 61 

mineralising fluids (permineralisation) or the rapid in-situ growth of minerals (authigenic 62 

mineralisation) driven by the activity of bacterial decay [1]. Better constraining these 63 

taphonomic processes is critical for circumventing any potential fossilisation bias (e.g. size, 64 

taxonomic or tissue sorting that affects exceptional preservation deposits [1,2]), and properly 65 

interpret these invaluable snapshots of past life. 66 

 The mineralogical characterisation of such exceptionally preserved fossils was historically 67 

assessed through petrographic observations of thin sections, later complemented –or even 68 

replaced– by the use and/or development of the most cutting-edge techniques available. As a 69 

result, the mineralogical composition of a fossil is nowadays largely inferred indirectly from its 70 

elemental composition, usually obtained from scanning electron microscope (SEM) energy-71 

dispersive X-ray spectroscopy and mapping (e.g. [3]) or laser ablation (LA) ICP-MS (e.g. [4]). 72 

More recently, improvement in synchrotron rapid scanning (SRS) X-ray fluorescence (XRF), 73 

which produces 2D distributions of major-to-trace elements for decimetre-scale objects, offers 74 

additional palaeobiological, palaeoenvironmental and taphonomic information [5–11]. 75 



 

 In contrast, X-ray diffraction (XRD), which specifically identifies the minerals present is 76 

rarely used by palaeontologists as it requires destructive sampling and powder preparation, and 77 

often only provides limited spatial information in highly heterogeneous materials such as fossils. 78 

In few studies, electron backscatter diffraction (EBSD), a SEM–based technique that provides 79 

information about the structure, crystal orientation (texture), phase or strain in materials (e.g. 80 

[12]), was used to disentangle mineralisation processes in fossils. For instance, it revealed key 81 

insight into biological control of mineral formation in mollusks, brachiopods and trilobites [13] 82 

but also microfossils [14]. Nevertheless, EBSD is restricted to sample sizes accommodated by 83 

the SEM chamber, operates mostly in reflection such that it requires the preparation of a finely 84 

polished sample surface, and the electron beam only diffracts in the first few lattice layers 85 

(typically ~50 nm). Extracting information not restricted to the very surface (i.e. from the 86 

volume or bulk) can be achieved in transmission geometry, using a detector placed behind the 87 

sample. This requires high-energy X-ray beams adapted to the thickness of the material under 88 

investigation, and has been particularly used for the visualisation of paintings hidden underneath 89 

layers containing heavy elements that prevent the use of XRF mapping (e.g. [15]). As for 90 

palaeontology, Mürer et al. [16] non-destructively reconstructed 3D maps of mineral 91 

composition and hydroxyapatite orientation in small (1–2 cm) bones of early tetrapod and lobe-92 

finned fish by combining XRD and CT using very high-energy X-rays (86.6 keV) within a 12–93 

72-hour time frame acquisition. Lower X-ray energies of 6–30 keV (commonly available at XRD 94 

synchrotron beamlines) enable imaging in 2D the mineralogical structure and microtexture of 95 

thinner samples or sections, e.g., of modern and archeological otoliths, within a reasonable time 96 

frame (typically ~10 minutes for 32 kilopixel images, i.e. ~5 hours for megapixels images) and 97 

coupled to XRF mapping [17]. 98 



 

Here we assess the potential of XRD mapping for investigating mineralisation processes 99 

in the fossil record, using four fossils representing a wide range of (i) taxonomic affinities 100 

(arthropods, sarcopterygians and actinopterygians), (ii) types of preservation (compressed and 101 

3D fossils, including extensive soft-tissue mineralisation) and (iii) ages and depositional 102 

environments. We produce megapixel mineralogical maps across millimetre thick cross-sections 103 

through 3D-preserved fossils and pluri-centimetre compressed fossils (up to 5 × 3 cm2 lateral 104 

area). Insights into mineral identification and distribution at the microscale over large areas, as 105 

well as crystallite orientation and size in fossils show great promise for taphonomic and 106 

anatomical studies. 107 

 108 

 109 

2. Material and methods 110 

 111 

Mineralogical maps were collected synchronously with X-ray fluorescence maps at the DiffAbs 112 

beamline of the SOLEIL synchrotron source (France), owing to the development of a fast and 113 

multi-technique data acquisition platform at the SOLEIL synchrotron (the FLYSCAN platform 114 

[18]). 115 

 116 

2.1. Experimental setup 117 

Synchronous synchrotron rapid scanning X-ray fluorescence and diffraction mapping (SRS-118 

XRFD) was performed using an incident X-ray beam of 16.2 or 18 keV, monochromatised using 119 

a Si(111) double-crystal monochromator, with a beam size diameter reduced down to 50 or 100 120 

µm using platinum pinholes, or focused down to ~10 µm using Kirkpatrick-Baez mirrors [19]. 121 



 

XRF was collected using a 4-element silicon drift detector (SDD, Vortex ME4, Hitachi High-122 

Technologies Science America, Inc., total active area: 170 mm2) oriented at 90° to the incident 123 

beam, in the horizontal plane. XRD was collected in transmission geometry using a 2D hybrid 124 

pixel detector (XPAD S140, 240×560 pixels of 130 µm each [20–23]), which is placed behind 125 

the sample at a distance of typically 200–300 mm such to intercept diffraction rings over an 126 

angular range of ~7° in scattering angle (2θ). Several images can be collected along the 2θ angle 127 

by moving the detector in order to extend the available 2θ domain; one can also settle for a single 128 

detector position using a priori knowledge of the fossil composition to select a 2θ domain 129 

encompassing the diffraction peaks of interest (note that larger detectors can be used to cover a 130 

wider domain; e.g. [15,16]). Details about detector design, geometry, calibration, correction of 131 

the images, and diagram (or profile) reconstructions from the corrected images are available in 132 

[23, 24] and references therein. Figure 1a shows a schematic view of the setup. 133 

Two-dimensional scanning was done by moving laterally the fossils in a plane rotated 134 

around the vertical axis by 20° to the primary beam (i.e., incident angle), to limit X-ray beam 135 

footprint on the sample but also such that the sample exhibits its surface to the SDD detector (no 136 

shadowing of the reflected XRD signal, figure 1a). Mapping over the entire fossils at a 35–100 137 

µm lateral resolution was performed on the fly using the FLYSCAN platform [18]. A full XRF 138 

spectrum and one or several XRD images were collected at each pixel.  139 

 140 

2.2. Data processing 141 

2.2.1. Images generation and phase identification 142 

XRD images were processed through self-written routines (azimuthal data regrouping along y 143 

direction) to extract their respective diffractograms (Intensity vs. 2θ profiles), and generate 4D 144 



 

datasets (x, y, 2θ, intensity) and then particular XRD contrast maps. Phase identification and 2θ 145 

calibration were performed using powder XRD diffractograms obtained on fragments of the 146 

sedimentary matrix (and of the fossil when possible) using the Match! software (Crystal Impact) 147 

making use of the International Centre for Diffraction Data (ICDD)- PDF 2015 database. 148 

Additional peaks in the XRD maps could then be identified using Match/ICDD database, as well 149 

as from the elemental information provided by the XRF data. All mineralogical and elemental 150 

distributions presented herein correspond to integrated intensities from the main XRD and XRF 151 

peaks, represented using linear (expect figure 1b, logarithmic) grey or colour scales that go from 152 

dark to light, respectively for low to high intensities. By Gaussian fitting the 2θ profile of XRD 153 

peaks attributed to different crystalline phases, corresponding crystallite sizes were extracted (for 154 

each pixel of the maps) by converting their full width at half maximum (FWHM) using 155 

Scherrer’s formula. It was assumed that only the crystallite size is contributing to the broadening, 156 

and an instrument resolution function measured as ~0.035° (amounting several 10 %, and up to 157 

50 % of the measured peak FWHM) was also taken into account for FWHM deconvolution.  158 

 159 

2.2.2. Local texture measurements 160 

In order to confirm some microstructure results obtained using the local probe XRD approach, 161 

supplementary local texture measurements were performed on a ‘rod’-shaped sample (~24 × 1.5 162 

× 1.5 mm3 H×W×L) extracted using a diamond wire saw (figures 2a, 3a). 163 

A texture measurement allows retrieving information about the orientation of the 164 

crystallites in the sample: for a fixed 2q position of the detector (i.e. accessing a particular inter-165 

reticular distance), the sample is oriented in all positions in the angular space. This is done by 166 

scanning it in azimuth (j, rotation around the sample surface normal) and elevation (y, rotation 167 



 

around the projection of the impinging X-ray beam on the sample surface), while recording, at 168 

each position, the X-ray scattered signal. The resulting intensity is represented in a map, in polar 169 

coordinates (azimuth angle and elevation, e.g. figures 3f–h). In this way, when one or several 170 

crystallites are oriented such that the Bragg law is fulfilled for the particular inter-reticular 171 

distance probed (or the particular Bragg angle 2q), high signal is found in the particular 172 

corresponding regions of the polar map, allowing: i) to retrieve the particular orientation of the 173 

grains (j, y), and ii) to possibly quantify the volume ratio of that particular orientation, 174 

compared to other orientations on the map.  175 

Rapid texture measurements were performed using the area detector (XPAD). The 176 

sample was illuminated by the impinging X-ray beam (of size ~ 150 × 150 µm2 in this case) and 177 

the azimuth (j) and elevation (y) angles were scanned, the first one continuously. An image was 178 

recorded in each jy point, then texture maps for various 2q angles (i.e. volumes) were 179 

reconstructed [24]. Then, a similar dataset was recorded at the next vertical position on the 180 

sample. A rod-shaped sample is required in this case due to the azimuthal rotations during the 181 

measurements: as for the transmission XRD experiment, the sample dimension along the 182 

transmitted beam path needs to be relatively small (~ 1.5 × 1.5 mm2 in this case). This approach 183 

is expected to give volume texture information with a lateral resolution of about 150 – 200 µm 184 

along the sample long dimension. 185 

 186 

2.3. Samples 187 

The potential of this approach is illustrated using four fossils from different localities 188 

representing a wide range of taxa (an arthropod, a sarcopterygian and two actinopterygians), ages 189 

(Mesozoic and Cenozoic), sedimentary environments (concretions, shale, limestone), 190 



 

preservation types (compressed and 3D, including extensive soft-tissue mineralisation) and 191 

mineralogical compositions (carbonates, phosphates, metal sulfides and oxides). 3D fossils of the 192 

arthropod Dollocaris ingens Van Straelen, 1923, and the superimposed lung plates of the 193 

coelacanth Axelrodichthys araripensis Maisey, 1986 were prepared as millimetre-thick cross-194 

sections using a diamond disk saw. For A. araripensis, the fossil was embedded in resin, and we 195 

additionally extracted a ‘rod-shaped sample’ (mentioned above), so that 5 samples have actually 196 

been studied herein. Compressed specimens of the osteoglossomorph Laeliichthys ancestralis 197 

Santos, 1985, and of the cyprinodontiform Prolebias goreti Sauvage, 1878, were thin enough for 198 

X-ray transmission and were therefore mapped without any preparation. Age, locality, accession 199 

number, preservation, sedimentology and sample preparation information are available in table 1. 200 

 201 

 202 

3. Results and discussion 203 

 204 

3.1. Identification and distribution of minerals at the microscale 205 

XRD mapping successfully produce contrasts, with peak positions and intensities varying 206 

depending on the sample composition (figure 1). Nonetheless, unlike in rotating powder XRD, 207 

only polycrystalline materials can here display all peaks (orientations); not all the crystalline 208 

planes being in position to diffract the incident beam in non-polycrystalline phases. This can be 209 

seen by the rather ‘speckle’ feature of the XRD rings (figure 1c). Quantitative phase analyses 210 

(using Rietveld refinement) therefore can usually not be performed here, yet SRS-XRFD allows 211 

fine phase identification (figure 1d; constrained by XRF collected synchronously, and additional 212 

powder XRD diffractograms collected on the sedimentary matrix surrounding the fossil, or 213 



 

fragments of the fossil itself when possible), and offers the capability to image their distribution 214 

with <100µm lateral resolution over centimetric lateral sized samples (figure 1e).  215 

 Figure 1 shows 100-kilopixel mineralogical maps collected from a millimetre-216 

thick transversal section of the thylacocephalan arthropod Dollocaris ingens (specimen 217 

MNHN.F.A66910), clearly displaying the heart, muscles and gills preserved (figure 1a,b). This 218 

fossil, as well as most others from the deep-water ecosystem of La Voulte [25,26], exhibits a 219 

unique preservation style where most labile soft-tissues are three-dimensionally retained in a 220 

complex mineral association including sulfides [27], providing pivotal information about the 221 

affinities and lifestyle of several fossil groups including thylacocephalans [28]. Wilby et al. [27] 222 

proposed a taphonomic scenario, including a diagenetic sequence of mineral precipitation, where 223 

apatite served as ‘a template for calcification and pyritisation’. Nonetheless. many details of the 224 

anatomy of these fossils have been lost, indicating that there are unidentified fossilisation biases. 225 

In this context, Jauvion et al. used SRS-XRFD in combination with optical and electronic 226 

microscopies, EDX, powder XRD, and speciation X-ray absorption spectroscopy, to investigate 227 

fossilisation biases in the abundant D. ingens [29]. Indirect (SEM-EDX, XRF) and direct (XRD) 228 

mineralogical characterisation allowed the authors to identify and locate the various phases 229 

comprising the fossils, showing that histologically similar tissues were replaced by the same 230 

minerals under fast biodegradation [29].  231 

XRD precisely identified that cuticle and muscle fibres are preserved in fluorapatite, and 232 

epithelia-rich tissues (gills, digestive gland) in pyrite and pyrrhotite [29], Arsenopyrite is also 233 

present in muscle, as well as in the appendages, where they underlie muscular structures (figure 234 

1e, blue). Calcite is observed in the external part of the heart, but also where no organ is 235 

morphologically preserved and in the surrounding matrix (figure 1e, green). Dolomite is only 236 



 

found in the centre of the heart (figure 1e, red). Contrasting with the scenario proposed by Wilby 237 

et al. [27], data from MNHN.F.A66910 and several other specimens rather suggest that sulfide 238 

minerals and apatite precipitated concomitantly [29].  239 

From a taphonomic point of view, localising the different phases at the microscale over 240 

the entire organism (or here cross-section) is instrumental in defining a taphonomic sequence. 241 

Moreover, pinpointing tissue-specific mineralisation processes is crucial for understanding 242 

taphonomic biases. The fact that different tissue types are replicated in a certain mineral 243 

emphasizes that fossilisation processes are not homogeneous across the whole fossil, hence, a 244 

lack of favourable conditions for these minerals to precipitate might result in the loss of a whole 245 

group of tissues. Last but not least, identifying the precise mineralogical nature of phases has 246 

allowed Jauvion et al. [29] to better constrain precipitation-favourable physico-chemical 247 

parameters, and therefore reconstitute the fossilisation environment. 248 

 249 

 250 

3.2. Additional taphonomic information embedded in the XRD images 251 

Besides crystalline phase identification and their spatial distribution, the XRD data also 252 

contain information about the material structure and microstructure (figure 2). This is 253 

particularly interesting for mapping over pluri-centimetric areas, as shown herein, as the incident 254 

beam spot size used is much larger than the size of the crystallites constituting the fossil and its 255 

surrounding sedimentary matrix. In this case, XRD images acquired by the area detector can 256 

show i) continuous rings (though sometimes slight speckle-like features are clearly visible), 257 

which result from diffraction of powder-like polycrystalline phases (i.e. random oriented small 258 

crystallites), ii) ring segments that evidence texture (preferential crystalline orientation), and iii) 259 



 

spots (disposed on the corresponding ring) that indicate isolated grains (figure 2e). In turn, would 260 

the beam size be of similar size or smaller than the crystallites (i.e. when using micrometre or 261 

nanometre beams for very high-resolution analyses) only spots will potentially appear on the 262 

XRD images, if and only if the illuminated crystallite is in the right geometrical orientation to 263 

fulfill diffraction condition. In addition, the peak width is depending on the corresponding 264 

crystallites sizes (inversely proportional, i.e., the smaller the crystallites the wider the diffraction 265 

peaks [30]) and the local / micro-strain. In the absence of the latter the width of the diffraction 266 

peaks can therefore be converted to crystallite sizes (along a direction which can be retrieved 267 

from the geometry of the experiment), allowing to produce maps using crystallites size as a 268 

contrast signal (figure 2g). 269 

Such results are illustrated against a millimetre-thick transversal section through 270 

superimposed lung plates of the coelacanth Axelrodichthys araripensis (specimen UERJ-PMB 271 

143) from the ~110-million-year old Santana Formation of the Araripe Basin, Brazil (figure 2a). 272 

A peculiarity of coelacanths is indeed the presence of a lung covered by ossified plates, 273 

described for almost all coelacanth taxa ranging from the Palaeozoic to the Recent [31–34]. 274 

Enriched in yttrium (figure 2b), suggesting an apatite composition [35], these plates are 275 

confirmed to be of apatitic bone nature by SRS-XRFD (figure 2c,f), as previously recognised 276 

from the observation of cellular bone with star-shaped osteocytes and a globular mineralisation 277 

[33]. While hardly visible on the optical photograph, elemental and mineralogical maps further 278 

show that inner lung plates (i.e. the lowest plates in figure 2a–c, closer to the lung) are thinner 279 

than outer plates, confirming previous observations on ground cross-thin sections [31,36], and 280 

suggests that, most probably, these superimposed elements are formed first from the region 281 

closest to the lung surface than the outermost region. Note that the section has been prepared 282 



 

transversally through a crushed lung (see [31], text-fig 2D) and as such the cutting plane had 283 

little geometric impact on the plate thickness. The plates cover a calcium-rich area (figure 2b) 284 

made of large grains of calcite (figure 2c,d) exhibiting important texture (figure 2d,e) evidencing 285 

an infilling of the void created by lung decay. The surrounding carbonate concretion includes 286 

clay and quartz minerals (figure 2b,c).  287 

Apatite peaks from the lung plates are much wider than calcite and quartz peaks (figure 288 

2f), indicating that the plate crystallites are much smaller than those in the lung infill and the 289 

concretion. Crystallites size extraction show that apatite crystallites from the lung plates yield a 290 

homogeneous size of ~10–15 nm, whereas calcite and quartz crystallites are an order of 291 

magnitude larger and less uniform in size (~50–150 nm) (figure 2g). This data is totally in 292 

accordance with the homogeneity of the ossified, compacted and dense lung plates composed by 293 

true cellular bone tissue with osteocytes and globular mineralisation, separated by layers of 294 

coarser limestone matrix, observed in thin sections [31,33]. Lung plates of adult specimens of A. 295 

araripensis are constituted only by thin layers of homogeneous and compact bone tissue, 296 

contrasting to other coelacanth taxa (such as Swenzia latimeriae Clément, 2005) that may 297 

display, in addition, a non-mineralised region composed of a collagenic packet of microfibrils 298 

[33].  299 

In view of the large inhomogeneities observed in crystallites size maps at different 300 

sample locations (figure 2g, see e.g. missing information in areas shown as dark background), 301 

the data highlight the existence of a significant, and variable, crystallites orientation, which is far 302 

from being that of a randomly oriented powder. Indeed, extended 2D diffractograms at particular 303 

points in the sample (figure 2e) show, as mentioned before, the presence of XRD segments 304 

instead of isotropic rings. For highly textured samples, performing XRD measurements at fixed 305 



 

sample geometry could result into missed crystallinity information: crystallites corresponding to 306 

a particular phase are never in diffraction condition, thus no XRD corresponding peaks are 307 

detected. In order to illustrate this issue, a first XRD experiment was performed on the 308 

aforementioned rod-shaped sample (figure 3a): the sample was scanned along the vertical 309 

direction (z), at fixed azimuth and elevation angles (j, y), and, in each point, XRD datasets were 310 

recorded (figure 3b,c). One can already note that, for the 2 shown measurements, the 311 

diffractograms for 2 azimuths exhibit presence / absence of some XRD peaks at particular z-312 

coordinates (see e.g. the domain highlighted by circles in figure 3b,c). Thus, such a simple 313 

measurement does not ensure accessing all the characteristic XRD peaks and potentially might 314 

miss some of them. To overcome this issue, texture measurements were performed at each z 315 

position. A first way to exploit the texture datasets consists in extracting, for each z sample 316 

position, the XRD signal as the summation of all the corresponding XPAD images (azimuths & 317 

elevations angles). This approach ensures that all crystallites are brought into diffraction 318 

condition and potentially diffract, and it is now expected to obtain, from our illuminated volume 319 

(~ 0.15 × 1.5 × 1.5 mm3), a diffractogram corresponding to that of a random powder (figure 3d). 320 

The most striking differences are the presence, in the aforementioned texture map, of XRD peaks 321 

in the z-range 5–9 mm (calcite void-infilling of the lung cavity) for 2q values around 14° and 18° 322 

(unbroken ellipses in figure 3b–d); they were completely missing in all the tested fixed azimuth 323 

(0 to 80° range, every 20°) and fixed elevation (0°) configurations (line scans). Surprisingly, 324 

some apatite appears also associated to calcite in this region (dotted ellipses in figure 3b–d), 325 

likely to represent fragments of ossified plates that collapsed in the void left by the decay of the 326 

lung, or possibly phosphatised remains of the lung or soft-tissues, common in the Santana 327 

Formation [37,38]. 328 



 

Full data exploitation of texture measurements is achieved through the generation of pole 329 

figure volumes (5D datasets, j, y, 2q, z, Intensity). At particular 2q scattering angles 330 

characteristic of the crystalline phases of interest (see figure 2f), pole figures at each z-coordinate 331 

are extracted (e.g. figure 3f–h). The result is shown as a volume in figure 3e, in which pole 332 

figures along the z-direction and for particular 2q angles (and thus different crystalline 333 

structures) are shown as 3D iso-surfaces. This clearly demonstrates that missing information in 334 

areas such as the calcite void-infilling of the lung cavity that arose as dark background in figure 335 

2g (z-range 5–9 mm in figure 3) results from an absence of diffraction in the used geometry (see 336 

how XRD peaks are not missed anymore in the pole figure volume figure 3e–h). This 3D 337 

visualisation further reveals a layered structure of the sample, particularly visible for the calcite 338 

void-infilling of the lung cavity. Several other regions in the sample deserve a closer look. 339 

Around z ~ 13 mm, crystallites orientation is much more pronounced, as seen by the presence of 340 

localised scattered signal (‘hot spots’) in the particular polar maps (figure 3f–h). In the case of 341 

the calcite void-infilling, the signal is much more diffuse and its position slowly rotates in j and 342 

y, as illustrated in the 3D view (blue surface figure 3e). The crystallites of all the phases 343 

identified can rotate with large amplitudes of several 10°, having variable preferential 344 

orientation, for different z positions on the sample. This is illustrated by the 2 pole figures 345 

extracted for the apatite (taken 5 mm apart): the scattered intensity is grouped (within 10–20°) 346 

around (j ~ 45° / y ~ 10, 40 and 90°) and (j ~ 0° / y ~ 75° and j ~ 90° / y ~ 20°) respectively 347 

(figure 3h). 348 

Although this clearly shows the potential limitations of XRD mapping performed at fixed 349 

sample angles, one has to keep in mind not only the much longer time needed to perform such 350 

data acquisitions, but also the particular (rod-shaped) sample preparation required. Sensu stricto, 351 



 

the hypothesis of perfectly random-oriented polycrystalline phases does not hold. Yet, in the case 352 

of samples such as the fossils investigated herein, crystallites orientation still spans over several 353 

10°, ensuring that the various crystalline phases (and related information such as the average 354 

crystallite size, see above) can be detected (though possibly only partially) even for fixed sample 355 

angular positions. 356 

Considering now the above remarks, we can assume that texture is also visible in the 357 

mineralised heart of the 3D-preserved thylacocephalan MNHN.F.A66910 (figures 1e, 4): speckly 358 

regions of the calcite and dolomite maps are probably characteristic of large size grains, possibly 359 

with specific orientations. Elongated crystals of calcite with alternating, ordered orientation grew 360 

at the periphery of the heart, while the centre has been replaced with much poorly organised 361 

dolomite (figures 1e, 4). This reveals a two-steps sequence of mineralisation within the heart, 362 

contrary to the supposed coprecipitation with calcite in Jauvion et al. [29], which was tested 363 

possible with geochemical modelling. Moreover, the same model suggests calcite dissolution and 364 

dolomite precipitation while a later oxidation event is taking place, which might have been the 365 

case locally. 366 

From a taphonomic point of view, the latter example shows how crystallographic data 367 

offer important information complementary to phase identification in the reconstruction of 368 

mineralisation sequences. More generally, assessment of the distributions of crystallite size and 369 

orientation, in particular preferential orientations (or misorientations) in non-isotropic materials, 370 

is crucial for both palaeontological and taphonomic studies as they provide unique information 371 

for deciphering the mineralisation processes associated with biomineralisation, fossilisation 372 

and/or diagenesis. We should also point out here that variations in the position of a diffraction 373 

peak (in 2q) can be due to a modification of intereticular distances, and thus highlight strain 374 



 

(thermal or mechanical) undergone by the materials during burial or diagenesis. Moreover, 375 

resolving crystallographic parameters in the skeleton of problematic extinct microorganisms has 376 

been shown (using EBSD in that case) to help in the determination of their affinities [14], and 377 

could also be used for larger organisms and/or their tissues. 378 

 379 

 380 

3.3. Mineralogical contrasts reveal hidden anatomies 381 

The mineralogical contrasts offered by SRS-XRFD can also be exploited to image compressed 382 

fossils that remain difficult (or impossible) to describe using conventional imaging methods such 383 

as optical photography and microscopy. We applied SRS-XRFD to two compressed fossil fishes 384 

(figure 5), generating up to 1.2-megapixel maps for a specimen of the osteoglossomorph 385 

Laeliichthys ancestralis (specimen 099-PV-DZ-UERJ) from the ~125-million-year old 386 

Sanfransiscana Basin, Brazil (figure 5a,b). The distribution of fluorapatite from their skeleton 387 

allows for the visualisation of their anatomy (figure 5b,e), with a resolution sufficient to observe 388 

tiny details such as central hollow tubes within the ribs of Laeliichthys (figure 5c). In the case of 389 

a specimen of the cyprinodontiform Prolebias goreti (specimen MNHN.F.CRT255) from the 390 

~30-million-year old Apt-Céreste-Forcalquier Basin, southern France, hidden within a thin slab 391 

of limestone (figure 5d), fluorapatite maps even offer a way better contrast (figure 5e) than XRF 392 

mapping of yttrium (figure 5f), an element that preferentially substitutes for calcium in calcium 393 

phosphates such as bone apatite, and has been shown to yield useful anatomical contrasts for a 394 

wide range of fossils [35]. With an information depth of one to a few millimetres (depending on 395 

the energy of the X-ray used and the density of the material), SRS-XRFD mineralogical mapping 396 

of fossil slabs that thin therefore appears as a promising complement to SRS-XRF elemental 397 



 

mapping, which only gives access, in most fossils, to the first 100 µm at the surface of the 398 

sample (see [35]), to reveal hidden anatomies in compressed fossils. Texture can also provide 399 

interesting anatomical contrasts, distinguishing, for instance, between different bones, and scales 400 

in Laeliichthys (figure 5b). 401 

 402 

 403 

4. Potential limitations 404 

There are three main inherent limitations to SRS-XRFD 2D mapping: (1) the illuminated 405 

crystallites need to be in the right geometrical orientation to diffract; (2) the beam spot size 406 

should be larger than the size of the crystallites to obtain continuous rings (pending that 407 

condition (1) is fulfilled; if the beam size is of similar size or smaller than the crystallites, e.g. for 408 

high lateral resolution analyses, only spots will possibly appear on the XRD images); and most 409 

importantly (3) as the approach works in transmission geometry samples have to be thin enough 410 

to allow transmission. Conditions (1) and (2) are discussed and illustrated in §3.2 (note that 411 

because of condition (1) quantitative phase analyses cannot usually be performed here). 412 

Regarding condition (3), maximum sample thickness for a given material depends on the X-ray 413 

energy used (the higher the energy, the more X-rays penetrate). Within the 6–30 keV range of 414 

energies commonly available at XRD synchrotron beamlines, X-rays can probe up to a few 415 

millimetre-thick fossils (depending on the exact photon energy used and the density of the 416 

material), such that SRS-XRFD is well-adapted to millimetre-thick cross-sections prepared 417 

through three-dimensionally preserved fossils, but also to compressed fossils on slab that thin. It 418 

works also with thin sections, though they must be uncovered in order to take advantage of XRF 419 

collected synchronously in reflection geometry (the underlying glass slide on which they are 420 



 

mounted is not problematic as it does not produce a sharp diffraction that competes with that of 421 

the sample). Nonetheless, finely polished sections (30 µm or below) may not present a sufficient 422 

diffracting volume, resulting in a poor signal (or require increased exposure times per point for 423 

reasonable statistics); preference should therefore be given to sections polished to 100 µm or 424 

thicker (not thicker than a few millimetres to allow X-ray transmission; see above). 425 

 426 

 427 

5. Conclusion 428 

In this paper, we introduce synchrotron rapid scanning transmission X-ray diffraction, 429 

synchronously coupled to X-ray fluorescence mapping (SRS-XRFD), as a novel method of 430 

identifying and mapping minerals at the microscale over pluri-centimetric thin fossils and 431 

sections, within a reasonable time frame and with bulk sensitivity. XRF major-to-trace elemental 432 

mapping helps phase identification, and informs on trace element incorporations within minerals. 433 

Besides phase identification and corresponding lateral distribution in the sample, SRS-XRFD 434 

further informs on texture (preferential orientation), crystallites size and local strain, providing 435 

unique information to characterize fossil tissues and decipher fossilisation processes (figures 1–436 

4). In the examples presented herein, we particularly highlight how pinpointing tissue-specific 437 

phase distributions and crystallographic characteristics is instrumental in defining mineralisation 438 

sequences, reconstructing the fossilisation environment, and constraining preservation biases. In 439 

addition, this approach offers at least three other promising perspectives for taphonomic and 440 

palaeontological research: (1) the ability to similarly characterise both 3D fossils (using cross-441 

sections) and entire compressed fossils, which is hardly possible through the petrographic 442 

observation of thin sections, provide a unique way to compare preservation mechanisms at stake 443 



 

in formations that yielded both 3D and compressed fossils; (2) SRS-XRFD could be applied to 444 

fossils of the earliest known chordates and vertebrates with the aim to detect the first signs of 445 

hydroxyapatite biomineralisation (bone) in the fossil record, and to understand how the first 446 

forms of bone have evolved, how they were constructed, and their potential functions; (3) used in 447 

an integrative way, tissue-specific mineralisation identified at the locality level could reveal the 448 

affinities of enigmatic tissues and/or organisms. Mapping mineral distributions and 449 

crystallographic parameters at the microscale could also potentially provide new insight into 450 

other (bio)mineralisation processes in environmental sciences. Finally, we show that tissue-451 

specific mineralogical compositions, and/or differences with the encasing sedimentary matrix, 452 

can represent a new source of contrasts to visualise hidden anatomies in compressed fossils for 453 

which X-ray tomography is limited, and/or which are buried too deeply within the sediment for 454 

SRS-XRF mapping (figure 5). 455 
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 607 

 608 

Figure 1. SRS-XRFD of a millimetre-thick transversal section of the thylacocephalan arthropod 609 

Dollocaris ingens (specimen MNHN.F.A66910) from the La-Voulte-sur-Rhône Lagerstätte 610 

(Jurassic, France). (a) Schematic view of the setup; while laterally scanning the sample with a 611 

high energy X-ray beam, an XRD image (blue square) is collected at each pixel using a 2D area 612 

detector that intercepts portions of the diffraction rings (red). Simultaneously, an XRF dataset is 613 

also acquired in reflection. (b) Mean XRF spectrum from a 25-pixel area around the beam 614 

location (top), and false colour overlay of zinc (red), arsenic and lead (green) and manganese 615 

(blue) distributions (bottom). (c) XRD images from pixels in the gills and heart, showing 616 

contrasting peaks. (d) Mean diffractograms extracted from the XRD map for three different 25-617 



 

pixel areas in the gills, heart and muscles (colours; acquired at 18 keV), sum diffractogram from 618 

the map (black; acquired at 18 keV), and powder XRD diffractograms obtained from the gills 619 

and heart of a more anterior section of the same specimen (grey; acquired at Cu Kα). C, D and A 620 

phases are calcite, dolomite and arsenopyrite, respectively. (e) XRD intensity maps for 2θ (18 621 

keV) = 10.68° (blue), 13.07° (green) and 13.68° (red), showing different mineralogical contrasts 622 

associated to the diffraction peaks highlighted by the corresponding colours in (d). Acquisition 623 

parameters: 9×11 µm2 (H×V) beam spot size, 75×75 µm2 scan step, 108,900 pixels, 150 (XRF) 624 

and 180 (XRD) ms couting times per pixel (total acquisition time 4h51min). Scale bar = 5 mm. 625 

 626 

 627 

Figure 2. SRS-XRFD of a millimetre-thick transversal section through the lung plates of the 628 

coelacanth Axelrodichthys araripensis (specimen UERJ-PMB 143) from the Santana Formation 629 

of the Araripe Basin (Lower Cretaceous, northeastern Brazil). (a) Optical photograph of the 630 

section. Scale bar = 5 mm. The dotted and solid box areas respectively indicate the area imaged 631 

in (b–d, g) and the location where the rod-shaped sample in figure 3 was extracted. (b) False 632 



 

colour overlay of yttrium (red), iron (green) and calcium (blue) distributions from XRF. (c) False 633 

colour overlay of XRD intensity maps for 2θ (18 keV) of apatite (211) (red; 12.70°), quartz (101) 634 

(green; 10.40°) and calcite (006) (blue; 12.47°). (d) False colour overlay of calcite crystalline 635 

planes (113) (red), (202) (green) and (012) (blue) intensity maps showing large intensity 636 

fluctuations attributed to texture. (e) Combined XPAD images for the 3 areas identified by stars 637 

in (b) after conversion to (2θ-Ѱ) coordinates. (f) Mean diffractograms extracted from the XRD 638 

map for the three 24-pixel areas identified by stars in (b) (colours; acquired at 18 keV), sum 639 

diffractogram from the map (black; acquired at 18 keV), and a powder XRD diffractogram 640 

obtained from the sedimentary matrix (grey; acquired at Cu Kα). (g) Overlay of apatite (211) 641 

(red), quartz (101) (green) and calcite (006) (blue) crystallites size. Acquisition parameters: 642 

100×100 µm2 (H×V) beam spot size, 100×100 µm2 scan step, 25,894 pixels (slightly cropped 643 

herein), 45 (XRF) and 37.3 (XRD) ms counting times per pixel (total acquisition time 34min). 644 

The XRF and XRD data were acquired simultaneously.  645 

 646 



 

 647 

Figure 3. Pole figures along a rod-shaped sample extracted from the section through the lung 648 

plates of A. araripensis (specimen UERJ-PMB 143) shown in figure 2a. (a) Optical photograph 649 

of the sample. (b,c) Integrated 2θ intensities along the sample (z-axis), represented as colour map 650 

(logarithmic colour scale, from blue to red) for a fixed elevation (0°) and 2 particular azimuths, 651 

0° (b) and 20° (c). Note the presence of the XRD ‘gap’ in the sample region z = 5 to 9 mm. (d) 652 

2θ intensities averaged over 90° azimuth and elevation ranges. Regions where XRD peaks are 653 

different between panels (b) and (c), or only detected in (d), are highlighted by the circles and 654 

ellipses respectively. (e) 3D representation as iso-surfaces of pole figures along the sample, for 655 

particular peaks corresponding to apatite (300, 2θ = 13.15°; red), quartz (101, 2θ = 10.35°; 656 

green), and calcite (110, 2θ = 14.25°; blue). (f-h) Pole figures (log10 scale, first quadrant only) 657 



 

for quartz (101) (f), calcite (110) (g) and apatite (300) (h) at z = 13 mm (left) and another z 658 

position where a XRD ‘slab’ can be seen in the 3D view (colour code as in figure 2g, using 659 

identical amplitudes for each 2θ). All the measurements were performed at an X-ray beam 660 

energy of 18 keV. 661 

 662 

 663 

Figure 4. Textured mineralisation of the heart in the thylacocephalan arthropod D. ingens 664 

(specimen MNHN.F.A66910) from the La-Voulte-sur-Rhône Lagerstätte (Jurassic, France). (a) 665 

False colour overlay of different calcite crystalline planes (for different values of 2θ, in °, at 18 666 

keV). (b) False colour overlay of different dolomite crystalline planes (for different values of 2θ, 667 

in °, at 18 keV). (c) Optical close-up of the heart, showing some of elongated crystal of calcite at 668 

the periphery and much poorly organised dolomite at the centre. Acquisition parameters: 669 

9×11 µm2 (H×V) beam spot size, 75×75 µm2 scan step, 108,900 pixels, 180 ms counting time 670 

per pixel (total acquisition time 4h51min). Scale bar = 5 mm in (a,b) and 1 mm in (c). 671 

 672 



 

 673 

Figure 5. SRS-XRFD imaging of compressed fossil fishes. (a) Optical photograph of the 674 

osteoglossomorph Laeliichthys ancestralis (specimen 099-PV-DZ-UERJ) from the 675 

Sanfransiscana Basin, Quiricó Formation (Barremian, southeastern Brazil). (b) False colour 676 

overlay of XRD intensity maps for fluorapatite (200) (red) and (211) (green), and phyllosilicates 677 

(blue). (c) XRD intensity map for fluorapatite (002), close-up from the box area in (b). 678 

Acquisition parameters: 50×50 µm2 (H×V) beam spot size, 35×35 µm2 scan step, 1,182,149 679 

pixels (slightly cropped herein), 30 ms counting time per pixel (total acquisition time 24h03min). 680 

(d) Optical photograph of a hidden cyprinodontiform Prolebias goreti (specimen 681 

MNHN.F.CRT255) from the Apt-Céreste-Forcalquier Basin (Rupelian, Céreste-Bastide du bois, 682 

southern France). (e) XRD intensity map for fluorapatite (002). (f) Yttrium distribution from 683 

XRF. Acquisition parameters: 100×100 µm2 (H×V) beam spot size, 100×100 µm2 scan step, 684 

60,750 pixels (cropped herein), 54 (XRF) and 47.8 (XRD) ms counting times per pixel (total 685 

acquisition time 1h28min). Scale bar = 1 cm in (a,b,d–f) and 5 mm in (c). 686 



 

Table 1. Age, preservation, sedimentology and nature of the studied samples. Institution abbreviations: MNHN.F, palaeontology 687 

collection of the Muséum national d’Histoire naturelle, Paris, France; UERJ, Universidade do Estado do Rio de Janeiro, Rio de 688 

Janeiro, Brazil. 689 

 690 

species taxonomy age locality accession no. preservation and sedimentology sample nature figure 
        
Dollocaris 
ingens 

Arthropoda, 
?Crustacea, 
†Thylacocephala 

Callovian 
(~165 Ma) 

La-Voulte-sur-
Rhône 
(France) 

MNHN.F.A66
910 

carapace in 3D (incl. internal organs 
and part of appendages) within a 
metalliferous carbonate concretion 

prepared 
millimeter-thick 
cross-section 

1a 

        
Axelrodichthys 
araripensis 

Vertebrata, 
Sarcopterygii, 
Actinistia 

Aptian/Albian 
(~110 Ma) 

Araripe Basin 
(Brazil) 

UERJ-PMB 
143 

lung ossified plates and void-infilling 
in 3D within a carbonate concretion  

- prepared 
millimeter-thick 
cross-section 

2a 

      - prepared ‘rod’-
shaped sample 

3a 

        
Laeliichthys 
ancestralis 

Vertebrata, 
Actinopterygii, 
Osteoglossomorpha 

Barremian 
(~125 Ma) 

Sanfransiscana 
Basin (Brazil) 

099-PV-DZ-
UERJ 

compressed skeleton (incl. scales) in 
a soft, ferruginous paper shale 

unprepared 
compressed 
fossil on thin 
slab 

5a 

        
Prolebias 
goreti 

Vertebrata, 
Actinopterygii, 
Cyprinodontiformes 

Rupelian 
(~30 Ma) 

Apt-Céreste-
Forcalquier 
Basin (France) 

MNHN.F.CRT
255 

compressed skeleton hidden within a 
fine-grained limestone 

unprepared 
compressed 
fossil on thin 
slab 

5d 
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