89 research outputs found

    Evaluation of matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) for the Identification of Group B Streptococcus.

    Get PDF
    Objective Group B Streptococcus (GBS) is a leading cause of neonatal meningitis and sepsis worldwide. Intrapartum antibiotics given to women carrying GBS are an effective means of reducing disease in the first week of life. Rapid and reliable tests are needed to accurately identify GBS from these women for timely intrapartum antibiotic administration to prevent neonatal disease. Many laboratories now use matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF MS) by direct plating or cell lysis for the identification of GBS isolates. The cell lysis step increases time to results for clinical samples and is more complex to perform. Therefore, we seek to evaluate the sensitivity and specificity of the quicker and more rapid direct plating method in identifying GBS. Results We directly compared swab isolates analysed by both direct plating and cell lysis method and demonstrated that direct plating has a sensitivity and specificity of 0.97 and 1, respectively, compared to an additional cell lysis step. We demonstrated that MALDI-TOF MS can be successfully used for batch processing by the direct plating method which saves time. These results are reassuring for laboratories worldwide who seek to identify GBS from swabs samples as quickly as possible

    Novel 16S rRNA methyltransferase RmtE3 in acinetobacter baumannii ST79.

    Get PDF
    Introduction. The 16S rRNA methyltransferase (16S RMTase) gene armA is the most common mechanism conferring high-level aminoglycoside resistance in Acinetobacter baumannii, although rmtA, rmtB, rmtC, rmtD and rmtE have also been reported.Hypothesis/Gap statement. The occurrence of 16S RMTase genes in A. baumannii in the UK and Republic of Ireland is currently unknown.Aim. To identify the occurrence of 16S RMTase genes in A. baumannii isolates from the UK and the Republic of Ireland between 2004 and 2015.Methodology. Five hundred and fifty pan-aminoglycoside-resistant A. baumannii isolates isolated from the UK and the Republic of Ireland between 2004 and 2015 were screened by PCR to detect known 16S RMTase genes, and then whole-genome sequencing was conducted to screen for novel 16S RMTase genes.Results. A total of 96.5 % (531/550) of isolates were positive for 16S RMTase genes, with all but 1 harbouring armA (99.8 %, 530/531). The remaining isolates harboured rmtE3, a new rmtE variant. Most (89.2 %, 473/530) armA-positive isolates belonged to international clone II (ST2), and the rmtE3-positive isolate belonged to ST79. rmtE3 shared a similar genetic environment to rmtE2 but lacked an ISCR20 element found upstream of rmtE2.Conclusion. This is the first report of rmtE in A. baumannii in Europe; the potential for transmission of rmtE3 to other bacterial species requires further research

    A systematic review of economic evaluations of whole genome sequencing for the surveillance of bacterial pathogens

    Get PDF
    Whole-genome sequencing (WGS) has unparalleled ability to distinguish between bacteria, with many public health applications. The generation and analysis of WGS data require significant financial investment. We describe a systematic review summarizing economic analyses of genomic surveillance of bacterial pathogens, reviewing the evidence for economic viability. The protocol was registered on PROSPERO (CRD42021289030). Six databases were searched on 8 November 2021 using terms related to ‘WGS’, ‘population surveillance’ and ‘economic analysis’. Quality was assessed with the Drummond–Jefferson checklist. Following data extraction, a narrative synthesis approach was taken. Six hundred and eighty-one articles were identified, of which 49 proceeded to full-text screening, with 9 selected for inclusion. All had been published since 2019. Heterogeneity was high. Five studies assessed WGS for hospital surveillance and four analysed foodborne pathogens. Four were cost–benefit analyses, one was a cost–utility analysis, one was a cost-effectiveness analysis, one was a combined cost-effectiveness and cost–utility analysis, one combined cost-effectiveness and cost–benefit analyses and one was a partial analysis. All studies supported the use of WGS as a surveillance tool on economic grounds. The available evidence supports the use of WGS for pathogen surveillance but is limited by marked heterogeneity. Further work should include analysis relevant to low- and middle-income countries and should use real-world effectiveness data

    COVID-19 in Japan: insights from the first three months of the epidemic

    Get PDF
    Background Understanding the characteristics and natural history of novel pathogens is crucial to inform successful control measures. Japan was one of the first affected countries in the COVID-19 pandemic reporting their first case on 14 January 2020. Interventions including airport screening, contact tracing, and cluster investigations were quickly implemented. Here we present insights from the first 3 months of the epidemic in Japan based on detailed case data. Methods We conducted descriptive analyses based on information systematically extracted from individual case reports from 13 January to 31 March 2020 including patient demographics, date of report and symptom onset, symptom progression, travel history, and contact type. We analysed symptom progression and estimated the time-varying reproduction number, Rt, correcting for epidemic growth using an established Bayesian framework. Key delays and the age-specific probability of transmission were estimated using data on exposures and transmission pairs. Results The corrected fitted mean onset-to-reporting delay after the peak was 4 days (standard deviation: ±2 days). Early transmission was driven primarily by returning travellers with Rt peaking at 2.4 (95%CrI:1.6, 3.3) nationally. In the final week of the trusted period, Rt accounting for importations diverged from overall Rt at 1.1 (95% CrI: 1.0, 1.2) compared to 1.5 (95% CrI: 1.3, 1.6) respectively. Household (39.0%) and workplace (11.6%) exposures were the most frequently reported potential source of infection. The estimated probability of transmission was assortative by age. Across all age groups, cases most frequently onset with cough, fever, and fatigue. There were no reported cases of patients <20 years old developing pneumonia or severe respiratory symptoms. Conclusions Information collected in the early phases of an outbreak are important in characterising any novel pathogen. Timely recognition of key symptoms and high-risk settings for transmission can help to inform response strategies. The data analysed here were the result of robust and timely investigations and demonstrate the improvements to epidemic control as a result of such surveillanc

    IS1-related large-scale deletion of chromosomal regions harbouring the oxygen-insensitive nitroreductase gene nfsB causes nitrofurantoin heteroresistance in Escherichia coli

    Get PDF
    Nitrofurantoin is a broad-spectrum first-line antimicrobial used for managing uncomplicated urinary tract infection (UTI). Loss-of-function mutations in chromosomal genes nfsA, nfsB and ribE of Escherichia coli are known to reduce nitrofurantoin susceptibility. Here, we report the discovery of nitrofurantoin heteroresistance in E. coli clinical isolates and a novel genetic mechanism associated with this phenomenon. Subpopulations with lower nitrofurantoin susceptibility than major populations (hereafter, nitrofurantoin-resistant subpopulations) in two E. coli blood isolates (previously whole-genome sequenced) were identified using population analysis profiling. Each isolate was known to have a loss-of-function mutation in nfsA. From each isolate, four nitrofurantoin-resistant isolates were derived at a nitrofurantoin concentration of 32 mg l-1, and a comparator isolate was obtained without any nitrofurantoin exposure. Genomes of derived isolates were sequenced on Illumina and Nanopore MinION systems. Genetic variation between isolates was determined based on genome assemblies and read mapping. Nitrofurantoin minimum inhibitory concentrations (MICs) of both blood isolates were 64 mg l-1, with MICs of major nitrofurantoin-susceptible populations varying from 4 to 8 mg l-1. Two to 99 c.f.u. per million demonstrated growth at the nitrofurantoin concentration of 32 mg l-1, which is distinct from that of a homogeneously susceptible or resistant isolate. Derived nitrofurantoin-resistant isolates had 11-66 kb deletions in chromosomal regions harbouring nfsB, and all deletions were immediately adjacent to IS1-family insertion sequences. Our findings demonstrate that the IS1-associated large-scale genetic deletion is a hitherto unrecognized mechanism of nitrofurantoin heteroresistance and could compromise UTI management. Further, frequencies of resistant subpopulations from nitrofurantoin-heteroresistant isolates may challenge conventional nitrofurantoin susceptibility testing in clinical settings

    Characteristics and genomic epidemiology of colistin-resistant Enterobacterales from farmers, swine, and hospitalized patients in Thailand, 2014-2017

    Get PDF
    BACKGROUND: Colistin is one of the last resort therapeutic options for treating carbapenemase-producing Enterobacterales, which are resistant to a broad range of beta-lactam antibiotics. However, the increased use of colistin in clinical and livestock farming settings in Thailand and China, has led to the inevitable emergence of colistin resistance. To better understand the rise of colistin-resistant strains in each of these settings, we characterized colistin-resistant Enterobacterales isolated from farmers, swine, and hospitalized patients in Thailand. METHODS: Enterobacterales were isolated from 149 stool samples or rectal swabs collected from farmers, pigs, and hospitalized patients in Thailand between November 2014-December 2017. Confirmed colistin-resistant isolates were sequenced. Genomic analyses included species identification, multilocus sequence typing, and detection of antimicrobial resistance determinants and plasmids. RESULTS: The overall colistin-resistant Enterobacterales colonization rate was 26.2% (n = 39/149). The plasmid-mediated colistin-resistance gene (mcr) was detected in all 25 Escherichia coli isolates and 9 of 14 (64.3%) Klebsiella spp. isolates. Five novel mcr allelic variants were also identified: mcr-2.3, mcr-3.21, mcr-3.22, mcr-3.23, and mcr-3.24, that were only detected in E. coli and Klebsiella spp. isolates from farmed pigs. CONCLUSION: Our data confirmed the presence of colistin-resistance genes in combination with extended spectrum beta-lactamase genes in bacterial isolates from farmers, swine, and patients in Thailand. Differences between the colistin-resistance mechanisms of Escherichia coli and Klebsiella pneumoniae in hospitalized patients were observed, as expected. Additionally, we identified mobile colistin-resistance mcr-1.1 genes from swine and patient isolates belonging to plasmids of the same incompatibility group. This supported the possibility that horizontal transmission of bacterial strains or plasmid-mediated colistin-resistance genes occurs between humans and swine

    Improved contact tracing using network analysis and spatial-temporal proximity

    Get PDF
    PURPOSE: Contact tracing is a crucial tool in infection prevention and control (IPC), which aims to identify outbreaks and prevent onward transmission. What constitutes a contact is typically based on strict binary criteria (i.e., being at a location at the same time). Missing data, indirect contacts and background sources can however substantially alter contact-tracing investigations. Here, we present StEP, a Spatial-temporal Epidemiological Proximity model that accounts for imperfect data by introducing a network-based notion of contact based on spatial-temporal proximity derived from background flows of patient movement. METHODS & MATERIALS: We showcase StEP by analysing outbreaks of multidrug-resistant bacteria and COVID-19 within a large hospital Trust in London (UK).StEP utilises spatial-temporal patient trajectories and the background hospital movement flows to recover enhanced contact networks. Firstly, we study a well-characterised outbreak of carbapenemase-producing Enterobacteriaceae (CPE) involving 116 hospitalised patients where genetic sequencing is used to learn model parameters. Secondly, our trained model is deployed in an unsupervised manner on three unseen outbreaks involving 867 patients of related CPE-types. Thirdly, we test application to an altogether novel pathogen by analysing a hospital outbreak of COVID-19 among 90 hospital patients, and demonstrate the power of StEP when characterising newly emerging diseases, even when there is a lack of sequencing data. RESULTS: In addition to recovering core contact structures, StEP identifies missing contacts that link seemingly unconnected infection clusters, revealing a larger extent of transmission than conventional methods. Via genomic analyses we confirm that the additional contacts detected through StEP lead to improved alignment to the plasmid phylogeny (the major outbreak driving force). Hence the StEP contact network is most aligned to the transmission structure. CONCLUSION: By considering spatial-temporal information in a continuous manner, StEP tackles several challenges associated with traditional contact-tracing. StEP allows both direct and indirect contacts as possible routes of disease transmission and is tuneable to a pathogen's epidemiological characteristics. Such flexible use of heterogeneous data in uncertain situations can significantly enhance IPC

    RAPD PCR detects co-colonisation of multiple Group B Streptococcus genotypes: a practical molecular technique for screening multiple colonies

    Get PDF
    Group B Streptococcus (GBS) is a leading cause of neonatal meningitis, pneumonia, and sepsis. The biggest contributing factor of neonatal infections is due to vertical transmission from maternal colonisation of GBS in the genitourinary tract. Multiple serotype colonisation is often not investigated in epidemiological studies, but it is an important consideration for serotype-based vaccine development and implementation to ensure less abundant serotypes are not under-represented. In this study, we show that RAPD PCR is a quick tool useful in screening the presence of genetically different strains using multiple colony picks from a single patient swab. We observed a maximum of five different GBS strains colonising a single patient at a specific time
    • …
    corecore