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Abstract

Introduction. The 16S rRNA methyltransferase (16S RMTase) gene armA is the most common mechanism conferring high-level 
aminoglycoside resistance in Acinetobacter baumannii, although rmtA, rmtB, rmtC, rmtD and rmtE have also been reported.

Hypothesis/Gap statement. The occurrence of 16S RMTase genes in A. baumannii in the UK and Republic of Ireland is currently unknown.

Aim. To identify the occurrence of 16S RMTase genes in A. baumannii isolates from the UK and the Republic of Ireland between 
2004 and 2015.

Methodology. Five hundred and fifty pan-aminoglycoside-resistant A. baumannii isolates isolated from the UK and the Repub-
lic of Ireland between 2004 and 2015 were screened by PCR to detect known 16S RMTase genes, and then whole-genome 
sequencing was conducted to screen for novel 16S RMTase genes.

Results. A total of 96.5 % (531/550) of isolates were positive for 16S RMTase genes, with all but 1 harbouring armA (99.8 %, 
530/531). The remaining isolates harboured rmtE3, a new rmtE variant. Most (89.2 %, 473/530) armA-positive isolates belonged 
to international clone II (ST2), and the rmtE3-positive isolate belonged to ST79. rmtE3 shared a similar genetic environment to 
rmtE2 but lacked an ISCR20 element found upstream of rmtE2.

Conclusion. This is the first report of rmtE in A. baumannii in Europe; the potential for transmission of rmtE3 to other bacterial 
species requires further research.

Introduction
Acinetobacter baumannii is a nosocomial pathogen known to cause serious infections such as bacteraemia, ventilator-associated pneu-
monia and urinary infections. A. baumannii infections can be difficult to treat due to the presence of genes encoding aminoglycoside-
modifying enzymes, GES-, PER- and VEB-type extended-spectrum β-lactamases (ESBLs) and carbapenemases, as well as efflux pumps 
such as AdeABC, which confers resistance to aminoglycosides, chloramphenicol, fluoroquinolones, tetracyclines and trimethoprim [1].

16S rRNA methyltransferases (16S RMTases) are encoded by a single gene and confer high-level pan-aminoglycoside resistance 
(MICs >256 mg l−1), with 11 16S RMTase genes (armA, rmtA–rmtH, npmA and npmB) identified to date [2, 3]. armA is the most 
commonly identified 16S RMTase gene reported in A. baumannii [2], although A. baumannii has been associated with rmtA and 
rmtD in India [4], rmtB in Vietnam [5] and rmtC in Uruguay [6].

OPEN

ACCESS

http://jmm.microbiologyresearch.org/content/journal/jmm/
https://creativecommons.org/licenses/by/4.0/deed.ast


2

Taylor et al., Journal of Medical Microbiology 2022;71:001531

In order to identify whether 16S RMTase genes, other than the most commonly identified armA gene, are circulating in  
A. baumannii in the UK and the Republic of Ireland, the presence of 16S RMTase genes was sought in a collection of A. baumannii 
isolates displaying high-level pan-aminoglycoside resistance that had been submitted to Public Health England’s Antimicrobial 
Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit.

On 1 October 2021, the UK Health Security Agency (UKHSA) became fully operational, bringing together the health protection 
functions of Public Health England (PHE) and the National Health Service Test and Trace, including the Joint Biosecurity Centre. 
As this study was completed prior to this transition, we have retained the former Public Health England designations in the text.

Methods
Bacterial isolates
A panel of 550 A. baumannii isolates exhibiting high-level pan-aminoglycoside resistance (amikacin, gentamicin and tobramycin MICs 
>64, >32 and >32 mg l−1, respectively), as determined by agar dilution, was recovered from the AMRHAI Reference Unit’s culture collection. 
Isolates had been submitted for investigation of unusual (primarily carbapenem) resistance between January 2004 and December 2015.

DNA extraction and detection of 16S RMTase genes
Crude DNA extracts were subjected to two multiplex PCRs to detect 16S RMTase genes armA, rmtA–rmtH and npmA, as previ-
ously described [7]. Following PCR, the DNA fragments were analysed via gel electrophoresis using 2 % agarose gels.

Carbapenemase detection
The carbapenemase genes blaKPC, blaNDM, blaOXA-48-like and blaVIM were sought using in-house conventional [8–11] or real-time PCR 
[12]. The genes blaOXA-23-like, blaOXA-24-like, blaOXA-40-like, blaOXA-51-like and blaOXA-58-like, and blaGES-5, blaIMI, blaIMP, blaGIM, blaSIM, blaSME, and 
blaSPM were identified as previously described [10, 13–16].

Bacterial typing
A. baumannii isolates were identified as belonging to international clone II using a multiplex PCR targeting the carbapenemase, 
porin and pilus assembly system genes blaOXA-51-like, ompA and csuE, respectively, as previously described [17].

Plasmid extraction and electroporation
Plasmid extraction was conducted on the rmtE3-positive isolate using the PureYield Plasmid Miniprep System (Promega, South-
ampton, UK) according to the manufacturer’s instructions and the electroporation of plasmid DNA into TOP10 Escherichia coli 
cells (Invitrogen) was attempted. Cell suspensions were incubated in 10 ml lysogeny broth(LB) with 50 mg l−1 amikacin on a shaker 
overnight at 37 °C before being plated on LB agar plates containing 50 mg l−1 amikacin to select for transformants.

Analysis of 16S RMTase gene PCR-negative isolates
Isolates that were PCR-negative for 16S RMTase genes were screened for high-level pan-aminoglycoside resistance by streaking 
the isolates onto Mueller–Hinton agar plates supplemented with 256 mg l−1 amikacin, gentamicin or tobramycin, followed by 
incubation overnight at 37 °C. Isolates that grew on all three plates were whole-genome sequenced and analysed as described below.

Whole-genome sequencing (WGS)
WGS was conducted on the rmtE3-positive isolate, and also on 16S RMTase gene PCR-negative isolates exhibiting high-level 
aminoglycoside resistance, using a HiSeq sequencing system (Illumina, San Diego, CA, USA) with 150 bp paired-end reads. 
Genomes were de novo assembled using Velvet with the pipeline and improvements found at https://github.com/sanger-patho-
gens/vr-codebase and https://github.com/sanger-pathogens/assembly_improvement [18]. Reads were uploaded to the European 
Nucleotide Archive (ENA) under the project number PRJEB23879 and accession number ERR3181642. The purity of the DNA 
sequences was confirmed using KmerFinder 3.0 (https://cge.cbs.dtu.dk/services/KmerFinder/) [19–21], with antibiotic gene 
content and sequence type determined using ResFinder 3.0 (https://cge.cbs.dtu.dk/services/ResFinder/) [22] and MLST 2.0 
(https://cge.cbs.dtu.dk/services/MLST/) [23], respectively. Additionally, the variant rmtE3 was identified by aligning its DNA 
sequence to rmtE1 (accession number: GU201947) and rmtE2 (accession number: KT428293) using Clustal Omega (https://www.​
ebi.ac.uk/Tools/msa/clustalo/) [24]. The genetic environment of rmtE3 was investigated using Artemis 16.0.0 (Wellcome Trust 
Sanger Institute, Cambridge, UK) and compared to that of rmtE1 and rmtE2 using Basic Local Alignment Search Tool (blast; 
https://blast.ncbi.nlm.nih.gov/Blast.cgi). Genetic environments were visualized using EasyFig version 2.2.2 (http://mjsull.github.​
io/Easyfig/) [25].

To try to identify the origin of rmtE3, 24 high-quality genomes of ST79 A. baumannii submitted to pubMLST (https://pubmlst.​
org/organisms/acinetobacter-baumannii) were included in a phylogenetic analysis, as well as the rmtE3-positive ST2 A. baumannii 
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isolate from Venezuela (accession number: NZ_ULHD01000074.1). Core single-nucleotide polymorphisms (SNPs) for 26  
A. baumannii genomes [24 ST79 genomes identified from pubMLST, including strain AbH12o-A2 (accession number: CP009534) 
used as reference, the rmtE3-positive isolate from this study and the rmtE3-positive isolate from Venezuela] were called using 
Snippy v4.6.0 (https://github.com/tseemann/snippy) against strain AbH12o-A2. The whole-genome alignment was cleaned using 
the snippy-clean_full_aln function available as part of Snippy. Gubbins v2.4 [26] was used to identify recombination before 
processing alignment with SNP sites [27] to obtain recombination-free core SNPs file. Then, a maximum-likelihood phylogenetic 
tree was constructed using IQ-TREE v.2.0.3 [28] with the ‘GTR+G+ASC’ model and 1000 bootstrap replicates. The phylogenetic 
tree was visualized using iTOL v.5 [29]. SNP pairwise distances were calculated using mega X v.10.2.4 [30].

To rule out the presence of novel 16S RMTase genes, DNA sequences of the contigs were analysed with Pfam 31.0 (https://pfam.​
xfam.org/) [31] to screen for protein motifs that could be associated with novel 16S RMTase genes. Following a six-frame transla-
tion of the DNA, two searches were carried out to determine the presence of motifs associated with the two protein families 16S 
RMTases belonging to [FmrO (Pfam ID: PF07091) for ArmA and RmtA–RmtH and Methyltransf_4 family (Pfam ID: PF02390) 
for NpmA]. The E-value cut-offs used were the default E value of 1.0 and one with an E value of 1×10−5 (to increase stringency).

Results and discussion
Five hundred and thirty-one (96.5 %) of 550 A. baumannii isolates displaying high-level pan-aminoglycoside resistance were 
positive for 16S RMTase genes, where 99.8 % (530/531) were positive for armA and 1 isolate was positive for rmtE (0.2%). No 
rmtA, rmtB, rmtC, rmtD, rmtF, rmtG, rmtH or npmA genes were detected in this study.

Fig. 1. Alignment of the genetic environments of rmtE2 and rmtE3. (a) rmtE2-positive E. coli strain S68 plasmid pS68 (accession number: KU130396.1). 
(b) rmtE3-positive A. baumannii ST79. The grey shading indicates 99.0 % sequence homology.

Fig. 2. Maximum-likelihood phylogenetic tree of the rmtE3-positive isolate from this study and 24 ST79 A. baumannii isolates. A. baumannii strain 
AbH12o-A2 (accession number: CP009534) was used as a reference strain. na, not available.
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The majority of armA-positive isolates harboured acquired carbapenemase genes (95.5 % (506/530), where blaOXA-23 (99.0%, 
501/506) was the most common, and 89.2 % (473/530) isolates belonged to international clone II, which is a worldwide ‘high-risk’ 
bacterial clone known to be associated with both armA and blaOXA-23 [32]. These isolates were not characterized further.

The rmtE-positive isolate was isolated in 2014 from a patient in the East Midlands with no declared history of travel outside of 
the UK. To our knowledge, this is the first report of rmtE in A. baumannii in Europe and represents the earliest known rmtE-
positive isolate of A. baumannii, as rmtE was reported in A. baumannii in Venezuela (accession no.: NZ_ULHD01000074.1) 
subsequent to this study. rmtE has also been reported in E. coli [33] and Salmonella enterica subsp. enterica serovar Braenderup 
(accession no: NZ_QDSH01000020.1) in the USA as well as Pseudomonas aeruginosa in Myanmar [34] and Thailand (accession 
no: NSPO01000054.1). The variant rmtE2 has been identified in E. coli in PR China [35] and Enterobacter hormaechei in Myanmar 
(accession no: LC511997.1) and uncharacterized variants of rmtE have been identified in E. hormaechei in Thailand (accession 
no: NZ_NPZP01000120.1) and Klebsiella pneumoniae in Colombia (accession no: NZ_NCOO01000022.1).

The rmtE-positive isolate belonged to ST79 and harboured blaOXA-65 + blaOXA-72, which encode OXA-51-like and OXA-24-like 
carbapenemases, respectively. A. baumannii ST79 harbouring blaOXA-23 and blaOXA-72 carbapenemase genes has been reported in 
South America [36] and has previously been identified harbouring rmtC in Uruguay [6].

Analysis of WGS data from the rmtE-positive isolate identified that this isolate also harboured sul2 (conferring sulphonamide 
resistance) as well as strA and strB (conferring streptomycin resistance). Comparison with the sequences of rmtE1 (accession 
number: GU201947) and rmtE2 (accession number: KT428293) indicated that the identified rmtE gene had two SNPs: one at 
nucleotide 20 (T→C, V7A) and another at nucleotide 141 (T→A, N47K). As the latter mutation was not found in either rmtE1 or 
rmtE2, the new allele was designated rmtE3 (accession no: MH572011), based on the nomenclature proposed by Doi et al. [37].

Analysis of the genetic environment of rmtE3 identified the gene on a 4290 bp contig, which consisted of two tRNA-guanine 
transglycosylases, rmtE3, a hypothetical protein, an ISVs1-like transposase and a Tn3-like transposase. blast analysis found 
that rmtE3 shared a similar genetic environment with the rmtE2 gene reported on plasmid pS68 in E. coli strain S68 (accession 
number: KU130396.1). Unlike rmtE2, the ISCR20-transposase gene found upstream of the two tRNA-guanine transglycosylases 
was missing for rmtE3 and a Tn3-like transposase was found downstream of rmtE3 instead of an IS26 transposase gene (Fig. 1). 
ISCR20 was not found elsewhere in the genome, indicating that another mobile genetic element may be involved in the transposi-
tion of rmtE3. Transfer of rmtE3 to TOP10 E. coli by electroporation of plasmid DNA failed despite repeated attempts, hence the 
genetic location of rmtE3 could not be identified.

In addition to our study, rmtE3 was identified in A. baumannii strain 12918, which belonged to ST2 and was isolated from Venezuela 
in 2016 (accession number: NZ_ULHD01000074.1), on a similarly sized contig (4035 bp) with an identical genetic environment also 
lacking ISCR20 or any other mobile genetic element upstream of rmtE3; it is unknown if rmtE3 was chromosomally or plasmid encoded. 
A maximum-likelihood phylogenetic tree generated to compare the 2 rmtE3-positive A. baumannii isolates with published genomes of 24  
A. baumannii ST79 isolates confirmed that there was no close relationship between the 2 rmtE3-positive isolates (27 047 SNP difference; due 
to this distance the rmtE3-positive isolate from Venezuela was not included in the maximum-likelihood phylogenetic tree). Furthermore, 

Table 1. Genes encoding aminoglycoside modifying enzyme (AME) genes identified in 16S RMTase-negative A. baumannii isolates (n=15) that 
demonstrate high-level resistance to amikacin, gentamicin and tobramycin from the AMRHAI’s strain collection, 2003–2015

No. of isolates ST AME genes

aph(3')-VIa* ant(2’)-Ia†‡ aac(3)-IIa†‡ aac(6')-Ib-cr*‡ aac(3)-IId†‡ aac(6')-Ib*‡

2 1 2 1 – – – –

1 1 1 1 – 1 – 1

1 2 1 – 1 – – –

1 16 1 1 – – 1 –

1 23 1 1 – – – –

2 94 2 1 – – – –

1 113 1 1 – – – –

5 624 1 1 – – – –

1 718 1 1 – – – –

Total 19 14 1 1 1 1

Enzymes confer resistance to *, amikacin; †, gentamicin and ‡, tobramycin.
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the rmtE3-positive isolate from our study was not closely related to the other A. baumannii ST79 isolates (85–179 SNP difference; Fig. 2). 
The origin of rmtE3 is therefore currently unknown.

Out of the 19 16S RMTase PCR-negative A. baumannii isolates, only 15 (78,9 %) exhibited high-level amikacin, gentamicin and 
tobramycin resistance (MICs >256 mg l−1) on repeated screening. Following WGS, no novel 16S RMTase genes were identified 
but multiple genes encoding aminoglycoside-modifying enzymes (AMEs) were found, which would confer resistance to all three 
aminoglycosides when their phenotypes were combined (Table 1). High-level aminoglycoside resistance (MICs >128 mg l−1) due 
to the presence of multiple AME genes has also been reported in two A. baumannii isolates in Brazil [38].

In conclusion, whilst the majority of pan-aminoglycoside A. baumannii isolates in our collection belonged to international clone II 
and consequently harboured armA, we detected a novel RMTase gene, rmtE3, in an isolate belonging to ST79. As rmtE3 has only 
been reported in A. baumannii to date, additional research is required to identify whether rmtE3 is plasmidic or chromosomal 
in order to assess its potential for spread to other bacterial genera.
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