223 research outputs found

    Fluidization and Active Thinning by Molecular Kinetics in Active Gels

    Full text link
    We derive the constitutive equations of an active polar gel from a model for the dynamics of elastic molecules that link polar elements. Molecular binding kinetics induces the fluidization of the material, giving rise to Maxwell viscoelasticity and, provided that detailed balance is broken, to the generation of active stresses. We give explicit expressions for the transport coefficients of active gels in terms of molecular properties, including nonlinear contributions on the departure from equilibrium. In particular, when activity favors linker unbinding, we predict a decrease of viscosity with activity - active thinning - of kinetic origin, which could explain some experimental results on the cell cortex. By bridging the molecular and hydrodynamic scales, our results could help understand the interplay between molecular perturbations and the mechanics of cells and tissues.Comment: 6 pages, 2 figure

    Cooperative action of KIF1A Brownian motors with finite dwell time

    Get PDF
    We study in detail the cooperative action of small groups of KIF1A motors in its monomeric (single-headed) form within an arrangement relevant to vesicle traffic or membrane tube extraction. It has been recently shown that under these circumstances, the presence of a finite dwell time in the motor cycle contributes to remarkably enhance collective force generation [D. Oriola and J. Casademunt, Phys. Rev. Lett. 111, 048103 (2013)]. We analyze this mechanism in detail by means of a two-state noise-driven ratchet model with hard-core repulsive interactions. We obtain staircase-shaped velocity-force curves and show that motors self-organize in clusters with a nontrivial force distribution that conveys a large part of the load to the central motors. Under heavy loads, large clusters adopt a synchronic mode of totally asymmetric steps. We also find a dramatic increase of the collective efficiency with the number of motors. Finally, we complete the study by addressing different interactions that impose spatial constraints such as rigid coupling and raft-induced confinement. Our results reinforce the hypothesis that the specificity of KIF1A to axonal vesicular transport may be deeply related to its high cooperativity.Peer ReviewedPostprint (published version

    Cooperative Force Generation of KIF1A Brownian Motors

    Get PDF
    KIF1A is a kinesin motor protein that can work processively in a monomeric (single-headed) form by using a noise-driven ratchet mechanism. Here, we show that the combination of a passive diffusive state and finite-time kinetics of adenosine triphosphate hydrolysis provides a powerful mechanism of cooperative force generation, implying for instance that ~10 monomeric KIF1As can team up to become ~100 times stronger than a single one. Consequently, we propose that KIF1A could outperform conventional (double-headed) kinesin collectively and thus explain its specificity in axonal trafficking. We elucidate the cooperativity mechanism with a lattice model that includes multiparticle transitions.Peer ReviewedPostprint (published version

    Instrinsic oscillations of treadmilling microtubules in a motor bath

    Full text link
    We analyse the dynamics of overlapping antiparallel treadmilling microtubules in the presence of crosslinking processive motor proteins that counterbalance an external force. We show that coupling the force-dependent velocity of motors and the kinetics of motor exchange with a bath in the presence of treadmilling leads generically to oscillatory behavior. In addition we show that coupling the polymerization kinetics to the external force through the kinetics of the crosslinking motors can stabilize the oscillatory instability into finite-amplitude nonlinear oscillations and may lead to other scenarios, including bistability.Comment: 4 pages, 3 fig

    Motion of buoyant particles and coarsening of solid-liquid mixtures in a random acceleration field

    Get PDF
    Flow induced by a random acceleration field (g-jitter) is considered in two related situations that are of interest for microgravity fluid experiments: the random motion of an isolated buoyant particle and coarsening of a solid-liquid mixture. We start by analyzing in detail actual accelerometer data gathered during a recent microgravity mission, and obtain the values of the parameters defining a previously introduced stochastic model of this acceleration field. We then study the motion of a solid particle suspended in an incompressible fluid that is subjected to such random accelerations. The displacement of the particle is shown to have a diffusive component if the correlation time of the stochastic acceleration is finite or zero, and mean squared velocities and effective diffusion coefficients are obtained explicitly. Finally, the effect of g-jitter on coarsening of a solid-liquid mixture is considered. Corrections due to the induced fluid motion are calculated, and estimates are given for coarsening of Sn-rich particles in a Sn-Pb eutectic fluid, experiment to be conducted in microgravity in the near future.Comment: 25 pages, 4 figures (included). Also at http://www.scri.fsu.edu/~vinals/ross2.p
    • …
    corecore