131 research outputs found

    In memoriam : Christian Ehnholm

    Get PDF
    Non peer reviewe

    New medications targeting triglyceride-rich lipoproteins: Can inhibition of ANGPTL3 or apoC-III reduce the residual cardiovascular risk?

    Get PDF
    Remarkably good results have been achieved in the treatment of atherosclerotic cardiovascular diseases (CVD) by using statin, ezetimibe, antihypertensive, antithrombotic, and PCSK9 inhibitor therapies and their proper combinations. However, despite this success, the remaining CVD risk is still high. To target this residual risk and to treat patients who are statin-intolerant or have an exceptionally high CVD risk for instance due to familial hypercholesterolemia (FH), new therapies are intensively sought. One pathway of drug development is targeting the circulating triglyceride-rich lipoproteins (TRL) and their lipolytic remnants, which, according to the current view, confer a major CVD risk. Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (apoC-III) are at present the central molecular targets for therapies designed to reduce TRL, and there are new drugs emerging that suppress their expression or inhibit the function of these two key proteins. The medications targeting these components are biological, either human monoclonal antibodies or antisense oligonucleotides. In this article, we briefly review the mechanisms of action of ANGPTL3 and apoC-III, the reasons why they have been considered promising targets of novel therapies for CVD, as well as the current status and the most important results of their clinical trials. (C) 2018 Elsevier B.V. All rights reserved.Peer reviewe

    Angiopoietin-like protein 3, an emerging cardiometabolic therapy target with systemic and cell-autonomous functions

    Get PDF
    Angiopoietin like protein 3 (ANGPTL3) is best known for its function as an inhibitor of lipoprotein and endothelial lipases. Due to the capacity of genetic or pharmacologic ANGPTL3 suppression to markedly reduce circulating lipoproteins, and the documented cardioprotection upon such suppression, ANGPTL3 has become an emerging therapy target for which both antibody and antisense oligonucleotide (ASO) therapeutics are being clinically tested. While the antibody is relatively selective for circulating ANGPTL3, the ASO also depletes the intra-hepatocellular protein, and there is emerging evidence for cell-autonomous functions of ANGPTL3 in the liver. These include regulation of hepatocyte glucose and fatty acid uptake, insulin sensitivity, LDL/VLDL remnant uptake, VLDL assembly/secretion, polyunsaturated fatty acid (PUFA) and PUFA-derived lipid mediator content, and gene expression. In this review we elaborate on (i) why ANGPTL3 is considered one of the most promising new cardiometabolic therapy targets, and (ii) the present evidences for its intra-hepatocellular or cell-autonomous functions.Peer reviewe

    Short-Term Cooling Increases Plasma ANGPTL3 and ANGPTL8 in Young Healthy Lean Men but Not in Middle-Aged Men with Overweight and Prediabetes

    Get PDF
    Angiopoietin-like proteins (ANGPTLs) regulate triglyceride (TG)-rich lipoprotein distribution via inhibiting TG hydrolysis by lipoprotein lipase in metabolic tissues. Brown adipose tissue combusts TG-derived fatty acids to enhance thermogenesis during cold exposure. It has been shown that cold exposure regulates ANGPTL4, but its effects on ANGPTL3 and ANGPTL8 in humans have not been elucidated. We therefore investigated the effect of short-term cooling on plasma ANGPTL3 and ANGPTL8, besides ANGPTL4. Twenty-four young, healthy, lean men and 20 middle-aged men with overweight and prediabetes were subjected to 2 h of mild cooling just above their individual shivering threshold. Before and after short-term cooling, plasma ANGPTL3, ANGPTL4, and ANGPTL8 were determined by ELISA. In young, healthy, lean men, short-term cooling increased plasma ANGPTL3 (+16%, p < 0.05), ANGPTL4 (+15%, p < 0.05), and ANGPTL8 levels (+28%, p < 0.001). In middle-aged men with overweight and prediabetes, short-term cooling only significantly increased plasma ANGPTL4 levels (+15%, p < 0.05), but not ANGPTL3 (230 ± 9 vs. 251 ± 13 ng/mL, p = 0.051) or ANGPTL8 (2.2 ± 0.5 vs. 2.3 ± 0.5 μg/mL, p = 0.46). We show that short-term cooling increases plasma ANGPTL4 levels in men, regardless of age and metabolic status, but only overtly increases ANGPTL3 and ANGPTL8 levels in young, healthy, lean men

    Short-Term Cooling Increases Plasma ANGPTL3 and ANGPTL8 in Young Healthy Lean Men but Not in Middle-Aged Men with Overweight and Prediabetes

    Get PDF
    Angiopoietin-like proteins (ANGPTLs) regulate triglyceride (TG)-rich lipoprotein distribution via inhibiting TG hydrolysis by lipoprotein lipase in metabolic tissues. Brown adipose tissue combusts TG-derived fatty acids to enhance thermogenesis during cold exposure. It has been shown that cold exposure regulates ANGPTL4, but its effects on ANGPTL3 and ANGPTL8 in humans have not been elucidated. We therefore investigated the effect of short-term cooling on plasma ANGPTL3 and ANGPTL8, besides ANGPTL4. Twenty-four young, healthy, lean men and 20 middle-aged men with overweight and prediabetes were subjected to 2 h of mild cooling just above their individual shivering threshold. Before and after short-term cooling, plasma ANGPTL3, ANGPTL4, and ANGPTL8 were determined by ELISA. In young, healthy, lean men, short-term cooling increased plasma ANGPTL3 (+16%, p < 0.05), ANGPTL4 (+15%, p < 0.05), and ANGPTL8 levels (+28%, p < 0.001). In middle-aged men with overweight and prediabetes, short-term cooling only significantly increased plasma ANGPTL4 levels (+15%, p < 0.05), but not ANGPTL3 (230 ± 9 vs. 251 ± 13 ng/mL, p = 0.051) or ANGPTL8 (2.2 ± 0.5 vs. 2.3 ± 0.5 μg/mL, p = 0.46). We show that short-term cooling increases plasma ANGPTL4 levels in men, regardless of age and metabolic status, but only overtly increases ANGPTL3 and ANGPTL8 levels in young, healthy, lean men

    Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties

    Get PDF
    Objective Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. Approach and Results Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor--activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-B-dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-, interleukin-1, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)- and M-CSF (macrophage colony-stimulating factor)-differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)-activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. Conclusions The findings identify C-terminal cleavage of apoA-I by human mast cell chymase as a novel mechanism leading to loss of its anti-inflammatory functions. When targeting inflamed protease-rich atherosclerotic lesions with apoA-I, infusions of protease-resistant apoA-I might be the appropriate approach.Peer reviewe
    • …
    corecore