673 research outputs found
Classical spin liquids in stacked triangular lattice Ising antiferromagnets
We study Ising antiferromagnets that have nearest-neighbour interactions on
multilayer triangular lattices with frustrated ( and ) stacking, and
make comparisons with the unfrustrated () stacking. If interlayer
couplings are much weaker than in-plane ones, the paramagnetic phase of models
with frustrated stackings has a classical spin-liquid regime at low
temperature, in which correlations are strong both within and between planes,
but there is no long-range order. We investigate this regime using Monte Carlo
simulations and by mapping the spin models to coupled height models, which are
treated using renormalisation group methods and an analysis of the effects of
vortex excitations. The classical spin-liquid regime is parametrically wide at
small interlayer coupling in models with frustrated stackings. By contrast, for
the unfrustrated stacking there is no extended regime in which interlayer
correlations are strong without three-dimensional order.Comment: 25 pages, 21 figures; version to appear in Physical Review B,
includes minor correction
Spin ice under pressure: symmetry enhancement and infinite order multicriticality
We study the low-temperature behaviour of spin ice when uniaxial pressure
induces a tetragonal distortion. There is a phase transition between a Coulomb
liquid and a fully magnetised phase. Unusually, it combines features of
discontinuous and continuous transitions: the order parameter exhibits a jump,
but this is accompanied by a divergent susceptibility and vanishing domain wall
tension. All these aspects can be understood as a consequence of an emergent
SU(2) symmetry at the critical point. We map out a possible experimental
realisation
A Three Dimensional Kasteleyn Transition: Spin Ice in a [100] Field
We examine the statistical mechanics of spin-ice materials with a [100]
magnetic field. We show that the approach to saturated magnetisation is, in the
low-temperature limit, an example of a 3D Kasteleyn transition, which is
topological in the sense that magnetisation is changed only by excitations that
span the entire system. We study the transition analytically and using a Monte
Carlo cluster algorithm, and compare our results with recent data from
experiments on Dy2Ti2O7.Comment: 4 pages, 5 figure
Are multiphase competition & order-by-disorder the keys to understanding Yb2Ti2O7?
If magnetic frustration is most commonly known for undermining long-range
order, as famously illustrated by spin liquids, the ability of matter to
develop new collective mechanisms in order to fight frustration is no less
fascinating, providing an avenue for the exploration and discovery of
unconventional properties of matter. Here we study an ideal minimal model of
such mechanisms which, incidentally, pertains to the perplexing quantum spin
ice candidate Yb2Ti2O7. Specifically, we explain how thermal and quantum
fluctuations, optimized by order-by-disorder selection, conspire to expand the
stability region of an accidentally degenerate continuous symmetry U(1)
manifold against the classical splayed ferromagnetic ground state that is
displayed by the sister compound Yb2Sn2O7. The resulting competition gives rise
to multiple phase transitions, in striking similitude with recent experiments
on Yb2Ti2O7 [Lhotel et al., Phys. Rev. B 89 224419 (2014)]. Considering the
effective Hamiltonian determined for Yb2Ti2O7, we provide, by combining a gamut
of numerical techniques, compelling evidence that such multiphase competition
is the long-sought missing key to understanding the intrinsic properties of
this material. As a corollary, our work offers a pertinent illustration of the
influence of chemical pressure in rare-earth pyrochlores.Comment: 9 page
Topological Sector Fluctuations and Curie Law Crossover in Spin Ice
At low temperatures, a spin ice enters a Coulomb phase - a state with
algebraic correlations and topologically constrained spin configurations. In
Ho2Ti2O7, we have observed experimentally that this process is accompanied by a
non-standard temperature evolution of the wave vector dependent magnetic
susceptibility, as measured by neutron scattering. Analytical and numerical
approaches reveal signatures of a crossover between two Curie laws, one
characterizing the high temperature paramagnetic regime, and the other the low
temperature topologically constrained regime, which we call the spin liquid
Curie law. The theory is shown to be in excellent agreement with neutron
scattering experiments. On a more general footing, i) the existence of two
Curie laws appears to be a general property of the emergent gauge field for a
classical spin liquid, and ii) sheds light on the experimental difficulty of
measuring a precise Curie-Weiss temperature in frustrated materials; iii) the
mapping between gauge and spin degrees of freedom means that the susceptibility
at finite wave vector can be used as a local probe of fluctuations among
topological sectors.Comment: 10 pages, 5 figure
The Kasteleyn transition in three dimensions: spin ice in a [100] field
We discuss the nearest neighbour spin ice model in the presence of a magnetic
field placed along the cubic [100] direction. As recently shown in Phys. Rev.
Lett. 100, 067207, 2008, the symmetry sustaining ordering transition observed
at low temperature is a three dimensional Kasteleyn transition. We confirm this
with numerical data using a non-local algorithm that conserves the topological
constraints at low temperature and from analytic calculations from a Bethe
lattice of corner sharing tetrahedra . We present a thermodynamic description
of the Kasteleyn transition and discuss the relevance of our results to recent
neutron scattering experiments on spin ice materials
Magnetic Monopole Dynamics in Spin Ice
One of the most remarkable examples of emergent quasi-particles, is that of
the "fractionalization" of magnetic dipoles in the low energy configurations of
materials known as "spin ice", into free and unconfined magnetic monopoles
interacting via Coulomb's 1/r law [Castelnovo et. al., Nature, 451, 42-45
(2008)]. Recent experiments have shown that a Coulomb gas of magnetic charges
really does exist at low temperature in these materials and this discovery
provides a new perspective on otherwise largely inaccessible phenomenology. In
this paper, after a review of the different spin ice models, we present
detailed results describing the diffusive dynamics of monopole particles
starting both from the dipolar spin ice model and directly from a Coulomb gas
within the grand canonical ensemble. The diffusive quasi-particle dynamics of
real spin ice materials within "quantum tunneling" regime is modeled with
Metropolis dynamics, with the particles constrained to move along an underlying
network of oriented paths, which are classical analogues of the Dirac strings
connecting pairs of Dirac monopoles.Comment: 26 pages, 12 figure
The design of CO2-based working fluids for high-temperature heat source power cycles
The application of CO2power cycles is advantageous to exploit high-temperature sources (500-800°C) in the case of available low-temperature heat sinks (15-25°C). However, their efficiency is strongly reduced for higher heat sink temperatures. At these temperatures, due to the low-critical temperature of CO2(about 31°C), CO2is in fact compressed in the supercritical vapor phase rather than in the liquid phase, thus increasing energetic demand for compression. One of the solutions envisaged to overcome this problem is the addition of one or more chemicals that allow having a mixture with a higher critical temperature than the one of pure CO2. This preserve the working fluid compression in its liquid phase, even in the case of heat sinks with temperatures greater than 25°C. This research shows that the addition to CO2of a properly selected chemical component enables to increase the critical temperature up to 45°C with relevant improvements of cycle efficiency with respect to pure-CO2power cycles. In particular, it summarizes the most relevant criteria to be accounted for when selecting CO2-additives. Moreover, the paper warns of the thermodynamic effects deriving from adding to CO2a second characterized by a much more high critical temperature, such as the occurrence of infinite-pressure critical points and multiple-phase liquid-liquid and vapor-liquid critical points. Finally, the paper analyses the thermodynamic properties of a high-critical temperature CO2-based mixture, suitable for these applications, that presents multiple phase critical points. In this regard, it is specified that the paper also aims at filling a knowledge gap in the study of thermodynamic properties of mixtures presenting how do enthalpy and specific volume change in response to pressure variations in the event of liquid-liquid and vapour-liquid critical points. Finally, we present the comparison between performances of power cycles which use, as working fluid, either pure CO2or the novel designed higher temperature CO2-based mixture
Deep artifact suppression for spiral real-time phase contrast cardiac magnetic resonance imaging in congenital heart disease
PURPOSE: Real-time spiral phase contrast MR (PCMR) enables rapid free-breathing assessment of flow. Target spatial and temporal resolutions require high acceleration rates often leading to long reconstruction times. Here we propose a deep artifact suppression framework for fast and accurate flow quantification. METHODS: U-Nets were trained for deep artifact suppression using 520 breath-hold gated spiral PCMR aortic datasets collected in congenital heart disease patients. Two spiral trajectories (uniform and perturbed) and two losses (Mean Absolute Error -MAE- and average structural similarity index measurement -SSIM-) were compared in synthetic data in terms of MAE, peak SNR (PSNR) and SSIM. Perturbed spiral PCMR was prospectively acquired in 20 patients. Stroke Volume (SV), peak mean velocity and edge sharpness measurements were compared to Compressed Sensing (CS) and Cartesian reference. RESULTS: In synthetic data, perturbed spiral consistently outperformed uniform spiral for the different image metrics. U-Net MAE showed better MAE and PSNR while U-Net SSIM showed higher SSIM based metrics. In-vivo, there were no significant differences in SV between any of the real-time reconstructions and the reference standard Cartesian data. However, U-Net SSIM had better image sharpness and lower biases for peak velocity when compared to U-Net MAE. Reconstruction of 96 frames took ~59 s for CS and 3.9 s for U-Nets. CONCLUSION: Deep artifact suppression of complex valued images using an SSIM based loss was successfully demonstrated in a cohort of congenital heart disease patients for fast and accurate flow quantification
Semiclassical Propagation of Wavepackets with Real and Complex Trajectories
We consider a semiclassical approximation for the time evolution of an
originally gaussian wave packet in terms of complex trajectories. We also
derive additional approximations replacing the complex trajectories by real
ones. These yield three different semiclassical formulae involving different
real trajectories. One of these formulae is Heller's thawed gaussian
approximation. The other approximations are non-gaussian and may involve
several trajectories determined by mixed initial-final conditions. These
different formulae are tested for the cases of scattering by a hard wall,
scattering by an attractive gaussian potential, and bound motion in a quartic
oscillator. The formula with complex trajectories gives good results in all
cases. The non-gaussian approximations with real trajectories work well in some
cases, whereas the thawed gaussian works only in very simple situations.Comment: revised text, 24 pages, 6 figure
- …