We consider a semiclassical approximation for the time evolution of an
originally gaussian wave packet in terms of complex trajectories. We also
derive additional approximations replacing the complex trajectories by real
ones. These yield three different semiclassical formulae involving different
real trajectories. One of these formulae is Heller's thawed gaussian
approximation. The other approximations are non-gaussian and may involve
several trajectories determined by mixed initial-final conditions. These
different formulae are tested for the cases of scattering by a hard wall,
scattering by an attractive gaussian potential, and bound motion in a quartic
oscillator. The formula with complex trajectories gives good results in all
cases. The non-gaussian approximations with real trajectories work well in some
cases, whereas the thawed gaussian works only in very simple situations.Comment: revised text, 24 pages, 6 figure