56 research outputs found

    Hodgkin's lymphoma masquerading as vertebral osteomyelitis in a man with diabetes: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Infection and malignancy often have common characteristics which render the differential diagnosis for a prolonged fever difficult. Imaging and tissue biopsy are crucial in making a correct diagnosis, though differentiating between chronic osteomyelitis and malignancy is not always straightforward as they possess many overlapping features.</p> <p>Case Presentation</p> <p>A 52-year-old Caucasian man was treated with antibiotics for his diabetic foot infection after a superficial culture showed <it>Staphylococcus aureus</it>. He had persistent fevers for several weeks and later developed acute onset of back pain which was treated with several courses of antibiotics. Radiographic and pathological findings were atypical, and a diagnosis of Hodgkin's lymphoma was made 12 weeks later.</p> <p>Conclusion</p> <p>Clinicians should maintain a suspicion for Hodgkin's lymphoma or other occult malignancy when features of presumed osteomyelitis are atypical. Chronic vertebral osteomyelitis in particular often lacks features common to acute infectious disease processes, and the chronic lymphocytic infiltrates seen on histopathology have very similar features to Hodgkin's lymphoma, highlighting a similar inflammatory microenvironment sustained by both processes.</p

    Bifunctional Small Molecules Enhance Neutrophil Activities Against Aspergillus fumigatus in vivo and in vitro

    Get PDF
    Aspergillosis is difficult to treat and carries a high mortality rate in immunocompromised patients. Neutrophils play a critical role in control of infection but may be diminished in number and function during immunosuppressive therapies. Here, we measure the effect of three bifunctional small molecules that target Aspergillus fumigatus and prime neutrophils to generate a more effective response against the pathogen. The molecules combine two moieties joined by a chemical linker: a targeting moiety (TM) that binds to the surface of the microbial target, and an effector moiety (EM) that interacts with chemoattractant receptors on human neutrophils. We report that the bifunctional compounds enhance the interactions between primary human neutrophils and A. fumigatus in vitro, using three microfluidic assay platforms. The bifunctional compounds significantly enhance the recruitment of neutrophils, increase hyphae killing by neutrophils in a uniform concentration of drug, and decrease hyphal tip growth velocity in the presence of neutrophils compared to the antifungal targeting moiety alone. We validated that the bifunctional compounds are also effective in vivo, using a zebrafish infection model with neutrophils expressing the appropriate EM receptor. We measured significantly increased phagocytosis of A. fumigatus conidia by neutrophils expressing the EM receptor in the presence of the compounds compared to receptor-negative cells. Finally, we demonstrate that treatment with our lead compound significantly improved the antifungal activity of neutrophils from immunosuppressed patients ex vivo. This type of bifunctional compounds strategy may be utilized to redirect the immune system to destroy fungal, bacterial, and viral pathogens

    Control and Manipulation of Pathogens with an Optical Trap for Live Cell Imaging of Intercellular Interactions

    Get PDF
    The application of live cell imaging allows direct visualization of the dynamic interactions between cells of the immune system. Some preliminary observations challenge long-held beliefs about immune responses to microorganisms; however, the lack of spatial and temporal control between the phagocytic cell and microbe has rendered focused observations into the initial interactions of host response to pathogens difficult. This paper outlines a method that advances live cell imaging by integrating a spinning disk confocal microscope with an optical trap, also known as an optical tweezer, in order to provide exquisite spatial and temporal control of pathogenic organisms and place them in proximity to host cells, as determined by the operator. Polymeric beads and live, pathogenic organisms (Candida albicans and Aspergillus fumigatus) were optically trapped using non-destructive forces and moved adjacent to living cells, which subsequently phagocytosed the trapped particle. High resolution, transmitted light and fluorescence-based movies established the ability to observe early events of phagocytosis in living cells. To demonstrate the broad applicability of this method to immunological studies, anti-CD3 polymeric beads were also trapped and manipulated to form synapses with T cells in vivo, and time-lapse imaging of synapse formation was also obtained. By providing a method to exert fine control of live pathogens with respect to immune cells, cellular interactions can be captured by fluorescence microscopy with minimal perturbation to cells and can yield powerful insight into early responses of innate and adaptive immunity.National Institute of Biomedical Imaging and Bioengineering (U.S.) (grant T32EB006348)Massachusetts General Hospital (Department of Medicine Internal Funds)Center for Computational and Integrative Biology (Development fund)Center for Computational and Integrative Biology (AI062773)Center for Computational and Integrative Biology (grant AI062773)Center for Computational and Integrative Biology (grant DK83756)Center for Computational and Integrative Biology (grant DK 043351)National Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health (U.S.) (grant AI057999

    Identification of Candida glabrata genes involved in pH modulation and modification of the phagosomal environment in macrophages

    Get PDF
    notes: PMCID: PMC4006850types: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov'tCandida glabrata currently ranks as the second most frequent cause of invasive candidiasis. Our previous work has shown that C. glabrata is adapted to intracellular survival in macrophages and replicates within non-acidified late endosomal-stage phagosomes. In contrast, heat killed yeasts are found in acidified matured phagosomes. In the present study, we aimed at elucidating the processes leading to inhibition of phagosome acidification and maturation. We show that phagosomes containing viable C. glabrata cells do not fuse with pre-labeled lysosomes and possess low phagosomal hydrolase activity. Inhibition of acidification occurs independent of macrophage type (human/murine), differentiation (M1-/M2-type) or activation status (vitamin D3 stimulation). We observed no differential activation of macrophage MAPK or NFκB signaling cascades downstream of pattern recognition receptors after internalization of viable compared to heat killed yeasts, but Syk activation decayed faster in macrophages containing viable yeasts. Thus, delivery of viable yeasts to non-matured phagosomes is likely not triggered by initial recognition events via MAPK or NFκB signaling, but Syk activation may be involved. Although V-ATPase is abundant in C. glabrata phagosomes, the influence of this proton pump on intracellular survival is low since blocking V-ATPase activity with bafilomycin A1 has no influence on fungal viability. Active pH modulation is one possible fungal strategy to change phagosome pH. In fact, C. glabrata is able to alkalinize its extracellular environment, when growing on amino acids as the sole carbon source in vitro. By screening a C. glabrata mutant library we identified genes important for environmental alkalinization that were further tested for their impact on phagosome pH. We found that the lack of fungal mannosyltransferases resulted in severely reduced alkalinization in vitro and in the delivery of C. glabrata to acidified phagosomes. Therefore, protein mannosylation may play a key role in alterations of phagosomal properties caused by C. glabrata.Deutsche ForschungsgemeinschaftNational Institutes for HealthWellcome TrustBBSR

    TLR9 Is Actively Recruited to Aspergillus

    No full text

    A Clinical Study of Bilvadi Panchmool Ghanvati in the management of Sthaulya w.s.r. to Obesity

    Get PDF
    Today most of the non-communicable diseases have higher prevalence. Sthaulya (obesity or overweight) is one of them. This disorder has constituted a most important epidemic in the initial decades of the 21st century. Taking into consideration this fact a randomized clinical study was carried out with an aim to study the clinical efficacy of “Bilvadi Panchmool Ghanvati†in the management of Sthaulya (obesity). Amongst these, 15 patients were treated with Bilvadi Panchmool Ghanvati compound in the dose of 2 gram (4 tablets of 500 mg) 3 times a day with Madhudak before meal. The duration of treatment was 8 weeks with follow‑up for 4 weeks after the completion of treatment. Analysis of the overall effects showed that Bilvadi Panchmool Ghanvati provided marked reduction in weight, body mass index, and other signs and symptoms in patients of Sthaulya
    corecore