65 research outputs found

    Dynamin interacts with members of the sumoylation machinery

    Get PDF
    Dynamin is a GTP-binding protein whose oligomerization-dependent assembly around the necks of lipid vesicles mediates their scission from parent membranes. Dynamin is thus directly involved in the regulation of endocytosis. Sumoylation is a post-translational protein modification whereby the ubiquitin-like modifier Sumo is covalently attached to lysine residues on target proteins by a process requiring the concerted action of an activating enzyme (ubiquitin-activating enzyme), a conjugating enzyme (ubiquitin carrier protein), and a ligating enzyme (ubiquitin-protein is opeptide ligase). Here, we show that dynamin interacts with Sumo-1, Ubc9, and PIAS-1, all of which are members of the sumoylation machinery. Ubc9 and PIAS-1 are known ubiquitin carrier protein and ubiquitin-protein isopeptide ligase enzymes, respectively, for the process of sumoylation. We have identified the coiled-coil GTPase effector domain (GED) of dynamin as the site on dynamin that interacts with Sumo-1, Ubc9, and PIAS-1. Although we saw no evidence of covalent Sumo-1 attachment to dynamin, Sumo-1 and Ubc9 are shown here to inhibit the lipid-dependent oligomerization of dynamin. Expression of Sumo-1 and Ubc9 in mammalian cells down-regulated the dynamin-mediated endocytosis of transferrin, whereas dynamin-independent fluid-phase uptake was not affected. Furthermore, using high resolution NMR spectroscopy, we have identified amino acid residues on Sumo-1 that directly interact with the GED of dynamin. The results suggest that the GED of dynamin may serve as a scaffold that concentrates the sumoylation machinery in the vicinity of potential acceptor proteins

    The Cytoplasmic Location of Chicken Mx Is Not the Determining Factor for Its Lack of Antiviral Activity

    Get PDF
    Chicken Mx belongs to the Mx family of interferon-induced dynamin-like GTPases, which in some species possess potent antiviral properties. Conflicting data exist for the antiviral capability of chicken Mx. Reports of anti-influenza activity of alleles encoding an Asn631 polymorphism have not been supported by subsequent studies. The normal cytoplasmic localisation of chicken Mx may influence its antiviral capacity. Here we report further studies to determine the antiviral potential of chicken Mx against Newcastle disease virus (NDV), an economically important cytoplasmic RNA virus of chickens, and Thogoto virus, an orthomyxovirus known to be exquisitely sensitive to the cytoplasmic MxA protein from humans. We also report the consequences of re-locating chicken Mx to the nucleus.Chicken Mx was tested in virus infection assays using NDV. Neither the Asn631 nor Ser631 Mx alleles (when transfected into 293T cells) showed inhibition of virus-directed gene expression when the cells were subsequently infected with NDV. Human MxA however did show significant inhibition of NDV-directed gene expression. Chicken Mx failed to inhibit a Thogoto virus (THOV) minireplicon system in which the cytoplasmic human MxA protein showed potent and specific inhibition. Relocalisation of chicken Mx to the nucleus was achieved by inserting the Simian Virus 40 large T antigen nuclear localisation sequence (SV40 NLS) at the N-terminus of chicken Mx. Nuclear re-localised chicken Mx did not inhibit influenza (A/PR/8/34) gene expression during virus infection in cell culture or influenza polymerase activity in A/PR/8/34 or A/Turkey/50-92/91 minireplicon systems.The chicken Mx protein (Asn631) lacks inhibitory effects against THOV and NDV, and is unable to suppress influenza replication when artificially re-localised to the cell nucleus. Thus, the natural cytoplasmic localisation of the chicken Mx protein does not account for its lack of antiviral activity

    SAMHD1-Deficient CD14+ Cells from Individuals with Aicardi-Goutières Syndrome Are Highly Susceptible to HIV-1 Infection

    Get PDF
    Myeloid blood cells are largely resistant to infection with human immunodeficiency virus type 1 (HIV-1). Recently, it was reported that Vpx from HIV-2/SIVsm facilitates infection of these cells by counteracting the host restriction factor SAMHD1. Here, we independently confirmed that Vpx interacts with SAMHD1 and targets it for ubiquitin-mediated degradation. We found that Vpx-mediated SAMHD1 degradation rendered primary monocytes highly susceptible to HIV-1 infection; Vpx with a T17A mutation, defective for SAMHD1 binding and degradation, did not show this activity. Several single nucleotide polymorphisms in the SAMHD1 gene have been associated with Aicardi-Goutières syndrome (AGS), a very rare and severe autoimmune disease. Primary peripheral blood mononuclear cells (PBMC) from AGS patients homozygous for a nonsense mutation in SAMHD1 (R164X) lacked endogenous SAMHD1 expression and support HIV-1 replication in the absence of exogenous activation. Our results indicate that within PBMC from AGS patients, CD14+ cells were the subpopulation susceptible to HIV-1 infection, whereas cells from healthy donors did not support infection. The monocytic lineage of the infected SAMHD1 -/- cells, in conjunction with mostly undetectable levels of cytokines, chemokines and type I interferon measured prior to infection, indicate that aberrant cellular activation is not the cause for the observed phenotype. Taken together, we propose that SAMHD1 protects primary CD14+ monocytes from HIV-1 infection confirming SAMHD1 as a potent lentiviral restriction factor

    Conformational analysis of the GTP-binding protein MxA using limited proteolysis

    Get PDF
    AbstractGuanosine triphosphate (GTP)-binding proteins are known to function as molecular switches that cycle between GTP-bound and guanosine diphosphate (GDP)-bound states. Switching is achieved by the fact that G-proteins in the GTP-bound conformation can interact with a certain set of effector molecules while they interact with a different set of partners in their GDP-bound conformation. The antiviral properties of the interferon-induced MxA protein are critically dependent on the ability of MxA to bind GTP. Using limited proteolysis we analyzed the conformations of the MxA protein under nucleotide-free, GDP-bound, and GTP-bound conditions. We find that whereas the conformations of nucleotide-free MxA and GDP-bound MxA are essentially similar, GTP-binding causes a dramatic change in the conformation of MxA

    JAK/STAT Pathways in Cytokine Signaling and Myeloproliferative Disorders: Approaches for Targeted Therapies

    No full text
    Hematopoiesis is the cumulative result of intricately regulated signaling pathways that are mediated by cytokines and their receptors. Studies conducted over the past 10 to 15 years have revealed that hematopoietic cytokine receptor signaling is largely mediated by a family of tyrosine kinases termed Janus kinases (JAKs) and their downstream transcription factors, termed STATs (signal transducers and activators of transcription). Aberrations in these pathways, such as those caused by the recently identified JAK2V617F mutation and translocations of the JAK2 gene, are underlying causes of leukemias and other myeloproliferative disorders. This review discusses the role of JAK/STAT signaling in normal hematopoiesis as well as genetic abnormalities associated with myeloproliferative and myelodisplastic syndromes. This review also summarizes the status of several small molecule JAK2 inhibitors that are currently at various stages of clinical development. Several of these compounds appear to improve the quality of life of patients with myeloproliferative disorders by palliation of disease-related symptoms. However, to date, these agents do not seem to significantly affect bone marrow fibrosis, alter marrow histopathology, reverse cytopenias, reduce red cell transfusion requirements, or significantly reduce allele burden. These results suggest the possibility that additional mutational events might be associated with the development of these neoplasms, and indicate the need for combination therapies as the nature and significance of these additional molecular events is better understood

    Characterization of carbamoyl phosphate synthetase of <i>Streptomyces </i>spp.

    No full text
    931-935Carbamoyl phosphate synthetase (CPS) activity in Streptomyces lividans was repressed (70%) by addition of arginine and uracil in the growth medium. Enzyme activity was also inhibited by UMP and activated by ornithine and IMP. Pattern of inhibition and activation was similar irrespective of whether the cells were grown in medium supplemented with arginine or with uracil. A mutant of S. coelicolor with dual auxotrophy for arginine and uracil possessed only about 20% of CPS activity compared to the wild-type strain. An activity staining protocol has been developed for CPS enzyme. Using this method a single CPS band has been observed in the crude extracts of Escherichia coli as well as in S. lividans. Taken together, our results supported the conclusion that Streptomyces species might possess a single CPS enzyme unlike other gram-positive bacteria, which show the presence of two pathway-specific isozymes (Bacillus) or none (Lactobacillus and Leuconostoc).</i

    Pericytoma With t(7;12) and ACTB-GLI1 Fusion

    No full text
    The entity "pericytoma with t(7;12)" was described as a rare, distinct perivascular myoid neoplasm provisionally classified within the family of myopericytic tumors that demonstrates t(7;12)(p22;q13) translocation with resultant ACTB-GLI1 fusion and biologically was felt to behave in an indolent fashion. However, a recent study showed that tumors with this and similar translocations may have variable morphology and immunohistochemical phenotype with inconsistent myopericytic characteristics and a propensity for metastasis, raising questions regarding the most appropriate classification of these neoplasms. Herein, we report 3 additional patients with tumors harboring t(7;12) and ACTB-GLI1 fusion. The tumors arose in adults and involved the proximal tibia and adjacent soft tissues, scapula and adjacent soft tissues, and ovary. All tumors were composed of round-to-ovoid cells with a richly vascularized stroma with many small, delicate, branching blood vessels, where the neoplastic cells were frequently arranged in a perivascular distribution. Both tumors involving bone showed histologic features of malignancy. By immunohistochemistry, all tested tumors were at least focally positive for smooth muscle actin (3/3) and CD99 (patchy) (2/2), with variable staining for muscle-specific actin (2/3), S100 protein (1/3), epithelial membrane antigen (2/3), and pan-keratin (1/3); all were negative for desmin and WT1 (0/3). The 2 patients with bone tumors developed metastases (27 and 84 mo after diagnosis). Whether these tumors are best classified as malignant myopericytoma variants or an emerging translocation-associated sarcoma of uncertain differentiation remains to be fully clarified; however, our study further documents the potential for these tumors to behave in an aggressive fashion, sometimes over a prolonged clinical course
    corecore