294 research outputs found

    Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    Get PDF
    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium

    Evaluation of mTOR-regulated mRNA translation.

    No full text
    mTOR, the mammalian target of rapamycin, regulates protein synthesis (mRNA translation) by affecting the phosphorylation or activity of several translation factors. Here, we describe methods for studying the impact of mTOR signalling on protein synthesis, using inhibitors of mTOR such as rapamycin (which impairs some of its functions) or mTOR kinase inhibitors (which probably block all functions).To assess effects of mTOR inhibition on general protein synthesis in cells, the incorporation of radiolabelled amino acids into protein is measured. This does not yield information on the effects of mTOR on the synthesis of specific proteins. To do this, two methods are described. In one, stable-isotope labelled amino acids are used, and their incorporation into new proteins is determined using mass spectrometric methods. The proportions of labelled vs. unlabeled versions of each peptide from a given protein provide quantitative information about the rate of that protein's synthesis under different conditions. Actively translated mRNAs are associated with ribosomes in polyribosomes (polysomes); thus, examining which mRNAs are found in polysomes under different conditions provides information on the translation of specific mRNAs under different conditions. A method for the separation of polysomes from non-polysomal mRNAs is describe

    Virtual reality rehabilitation in patients with chronic obstructive pulmonary disease: A randomized controlled trial

    Get PDF
    Purpose: This study compared the effects of inpatient-based rehabilitation program of patients with chronic obstructive pulmonary disease (COPD) using non-immersive virtual reality (VR) training with a traditional pulmonary rehabilitation program. The aims of this study were to determine 1) whether rehabilitation featuring both VR as well as exercise training provides benefits over exercise training (ET) alone and 2) whether rehabilitation featuring VR training instead of exercise training provides equivalent benefits. Patients and Methods: The study recruited 106 patients with COPD to a 2-week high-intensity, five times a week intervention. Randomized into three groups, 34 patients participated in a traditional pulmonary rehabilitation program including endurance exercise training (ET), 38 patients participated in traditional pulmonary rehabilitation, including both endurance exercise training and virtual reality training (ET+VR) and 34 patients participated in pulmonary rehabilitation program including virtual reality training but no endurance exercise training (VR). The traditional pulmonary rehabilitation program consisted of fitness exercises, resistance respiratory muscle and relaxation training. Xbox 360® and Kinect® Adventures software were used for the VR training of lower and upper body strength, endurance, trunk control and dynamic balance. Comparison of the changes in the Senior Fitness Test was the primary outcome. Analysis was performed using linear mixed-effects models. Results: The comparison between ET and ET+VR groups showed that ET+VR group was superior to ET group in Arm Curl (p<0.003), Chair stand (p<0.008), Back scratch (p<0.002), Chair sit and reach (p<0.001), Up and go (p<0.000), 6-min walk test (p<0.011). Whereas, the comparison between ET and VR groups showed that VR group was superior to ET group in Arm Curl (p<0.000), Chair stand (p<0.001), 6-min walk test (p<0.031). Conclusion: Results suggest that pulmonary rehabilitation program supplemented with VR training is beneficial intervention to improve physical fitness in patients with COPD

    Heating of nuclei with energetic anti-protons

    Get PDF
    International audienceHigh-energy Îł rays associated with the decay of the giant dipole resonance have been measured for two fusion reactions leading to the 140Sm compound nucleus at an excitation energy of 71 MeV. The observed yield increases with the asymmetry in the ratios of the number of neutrons to protons in the entrance channel. This is interpreted as resulting from giant dipole phonons excited at the moment of collision in an N/Z asymmetric reaction

    Epigenetic Engineering of Ribosomal RNA Genes Enhances Protein Production

    Get PDF
    Selection of mammalian high-producer cell lines remains a major challenge for the biopharmaceutical manufacturing industry. Ribosomal RNA (rRNA) genes encode the major component of the ribosome but many rRNA gene copies are not transcribed [1]–[5] due to epigenetic silencing by the nucleolar remodelling complex (NoRC) [6], which may limit the cell's full production capacity. Here we show that the knockdown of TIP5, a subunit of NoRC, decreases the number of silent rRNA genes, upregulates rRNA transcription, enhances ribosome synthesis and increases production of recombinant proteins. However, general enhancement of rRNA transcription rate did not stimulate protein synthesis. Our data demonstrates that the number of transcriptionally competent rRNA genes limits efficient ribosome synthesis. Epigenetic engineering of ribosomal RNA genes offers new possibilities for improving biopharmaceutical manufacturing and provides novel insights into the complex regulatory network which governs the translation machinery in normal cellular processes as well as in pathological conditions like cancer

    AKT overactivation can suppress DNA repair via p70S6 kinase-dependent downregulation of MRE11

    Get PDF
    Deregulated AKT kinase activity due to PTEN deficiency in cancer cells contributes to oncogenesis by incompletely understood mechanisms. Here, we show that PTEN deletion in HCT116 and DLD1 colon carcinoma cells leads to suppression of CHK1 and CHK2 activation in response to irradiation, impaired G2 checkpoint proficiency and radiosensitization. These defects are associated with reduced expression of MRE11, RAD50 and NBS1, components of the apical MRE11/RAD50/NBS1 (MRN) DNA damage response complex. Consistent with reduced MRN complex function, PTEN-deficient cells fail to resect DNA double-strand breaks efficiently after irradiation and show greatly diminished proficiency for DNA repair via the error-free homologous recombination (HR) repair pathway. MRE11 is highly unstable in PTEN-deficient cells but stability can be significantly restored by inhibiting mTORC1 or p70S6 kinase (p70S6K), downstream kinases whose activities are stimulated by AKT, or by mutating a residue in MRE11 that we show is phosphorylated by p70S6K in vitro. In primary human fibroblasts, activated AKT suppresses MRN complex expression to escalate RAS-induced DNA damage and thereby reinforce oncogene-induced senescence. Taken together, our data demonstrate that deregulation of the PI3K-AKT/ mTORC1/ p70S6K pathways, an event frequently observed in cancer, exert profound effects on genome stability via MRE11 with potential implications for tumour initiation and therapy

    Cell cycle and growth stimuli regulate different steps of RNA polymerase I transcription

    Get PDF
    Transcription of the ribosomal RNA genes (rDNA) by RNA polymerase I (Pol I) is a major control step for ribosome synthesis and is tightly linked to cellular growth. However, the question of whether this process is modulated primarily at the level of transcription initiation or elongation is controversial. Studies in markedly different cell types have identified either initiation or elongation as the major control point. In this study, we have re-examined this question in NIH3T3 fibroblasts using a combination of metabolic labeling of the 47S rRNA, chromatin immunoprecipitation analysis of Pol I and overexpression of the transcription initiation factor Rrn3. Acute manipulation of growth factor levels altered rRNA synthesis rates over 8-fold without changing Pol I loading onto the rDNA. In fact, robust changes in Pol I loading were only observed under conditions where inhibition of rDNA transcription was associated with chronic serum starvation or cell cycle arrest. Overexpression of the transcription initiation factor Rrn3 increased loading of Pol I on the rDNA but failed to enhance rRNA synthesis in either serum starved, serum treated or G0/G1 arrested cells. Together these data suggest that transcription elongation is rate limiting for rRNA synthesis. We propose that transcription initiation is required for rDNA transcription in response to cell cycle cues, whereas elongation controls the dynamic range of rRNA synthesis output in response to acute growth factor modulation

    Global identification of genes and pathways regulated by Akt during activation of T helper cells

    Get PDF
    We previously demonstrated that Akt differentially modulated a subset of NF-kB target genes during T cell activation. In the current study, we further explored the broader effects of Akt inhibition on T cell gene induction. Global microarray analysis was used to characterize T helper cell transcriptional responses following antigen receptor stimulation in the absence or presence of Akti1/2 (an allosteric inhibitor which targets Akt1 and Akt2), to identify novel targets dependent upon Akt and obtain a more comprehensive view of Akt-sensitive genes in Th2 helper T cells. Pathway analysis of microarray data from a CD4+ Th2 T cell line revealed effects on gene networks involving ribosomal and T cell receptor signaling pathways associated with Akti1/2 treatment. Using real-time PCR analysis, we validated the differential regulation of several genes in these pathways, including Ier3, Il13, Egr1, Ccl1 and Ccl4, among others. Additionally, transcription factor target gene (TFactS) analysis revealed that NF-kB and Myc were the most significantly enriched transcription factors among Akt-dependent genes after T cell receptor and CD28 stimulation. Akt activation elicited increases in the enrichment of NF-kB- and Myc-targeted genes. The present study has identified a diverse set of genes, and possible mechanisms for their regulation, that are dependent on Akt during T cell activation

    A Catching Trap for All Antiproton Seasons

    Get PDF
    We describe the origin, development, and status of the Los Alamos antiproton catching trap. Originally designed for the antiproton gravity experiment, it now is clear that this device can be a source of low-energy antiprotons for a wide range of physics, both on site, at CERN, and also off site.Comment: 18 pages, LaTeX, 6 figures available upon request, In honor of Herbert Walthe

    Determination of the neutron fluence, the beam characteristics and the backgrounds at the CERN-PS TOF facility

    Get PDF
    • …
    corecore