755 research outputs found

    Constraints on the sound speed of dark energy

    Full text link
    We have studied constraints on the equation of state, ww, and speed of sound, c_s, of the dark energy from a joint analysis of data from the cosmic microwave background, large scale structure and type-Ia supernovae. We find that current observations have no significant sensitivity to c_s. However, there is a slight difference between models in which there are no dark energy perturbations and models in which dark energy behaves as a fluid. Assuming that there are no dark energy perturbations shifts the allowed region for ww to slightly higher values. At present models with and without dark energy perturbations provide roughly equally good fits to observations, but the difference is potentially important for future parameter estimations. Finally, we have also performed error forecasts for future measurements of c_s.Comment: 9 pages, 6 figures, Revte

    Observational constraints on low redshift evolution of dark energy: How consistent are different observations?

    Full text link
    The dark energy component of the universe is often interpreted either in terms of a cosmological constant or as a scalar field. A generic feature of the scalar field models is that the equation of state parameter w= P/rho for the dark energy need not satisfy w=-1 and, in general, it can be a function of time. Using the Markov chain Monte Carlo method we perform a critical analysis of the cosmological parameter space, allowing for a varying w. We use constraints on w(z) from the observations of high redshift supernovae (SN), the WMAP observations of CMB anisotropies and abundance of rich clusters of galaxies. For models with a constant w, the LCDM model is allowed with a probability of about 6% by the SN observations while it is allowed with a probability of 98.9% by WMAP observations. The LCDM model is allowed even within the context of models with variable w: WMAP observations allow it with a probability of 99.1% whereas SN data allows it with 23% probability. The SN data, on its own, favors phantom like equation of state (w<-1) and high values for Omega_NR. It does not distinguish between constant w (with w<-1) models and those with varying w(z) in a statistically significant manner. The SN data allows a very wide range for variation of dark energy density, e.g., a variation by factor ten in the dark energy density between z=0 and z=1 is allowed at 95% confidence level. WMAP observations provide a better constraint and the corresponding allowed variation is less than a factor of three. Allowing for variation in w has an impact on the values for other cosmological parameters in that the allowed range often becomes larger. (Abridged)Comment: 21 pages, PRD format (Revtex 4), postscript figures. minor corrections to improve clarity; references, acknowledgement adde

    Late acceleration and w=1w=-1 crossing in induced gravity

    Full text link
    We study the cosmological evolution on a brane with induced gravity within a bulk with arbitrary matter content. We consider a Friedmann-Robertson-Walker brane, invariantly characterized by a six-dimensional group of isometries. We derive the effective Friedmann and Raychaudhuri equations. We show that the Hubble expansion rate on the brane depends on the covariantly defined integrated mass in the bulk, which determines the energy density of the generalized dark radiation. The Friedmann equation has two branches, distinguished by the two possible values of the parameter \ex=\pm 1. The branch with \ex=1 is characterized by an effective cosmological constant and accelerated expansion for low energy densities. Another remarkable feature is that the contribution from the generalized dark radiation appears with a negative sign. As a result, the presence of the bulk corresponds to an effective negative energy density on the brane, without violation of the weak energy condition. The transition from a period of domination of the matter energy density by non-relativistic brane matter to domination by the generalized dark radiation corresponds to a crossing of the phantom divide w=1w=-1.Comment: 7 pages, no figures, RevTex 4.0; (v2) new references are added, minor corrections and expanded discussion; (v3) additional comments at the end of section III, minor corrections and several new references are added, to match published version in Phys. Rev.

    On the determination of the deceleration parameter from Supernovae data

    Full text link
    Supernovae searches have shown that a simple matter-dominated and decelerating universe should be ruled out. However a determination of the present deceleration parameter q0q_0 through a simple kinematical description is not exempt of possible drawbacks. We show that, with a time dependent equation of state for the dark energy, a bias is present for q0q_0 : models which are very far from the so-called Concordance Model can be accommodated by the data and a simple kinematical analysis can lead to wrong conclusions. We present a quantitative treatment of this bias and we present our conclusions when a possible dynamical dark energy is taken into account.Comment: 4 pages, 3 figures, submitte

    Studies on the Antioxidant Properties of Various extracts of Hippophae rhamnoide

    Full text link
    Sea Buckthorn (Hippophae rhamnoides) a spiny shrub native to Ladakh Region of Jammu and Kashmir, have been found to posses so many medicinal properties from times immoral. From this point of view the antioxidant property of the plant fruit extracts have been analysed by DPPH method. Various plant extracts viz, fruit, leaf and root have been analysed for the antioxidant power determination in which fruit extracts showed highest free radical scavenging activity followed by leaf and root extracts. Among the solvents which have been used, more polar solvents showed highest antioxidant activity than the less polar solvent extracts. The IC50 value of various plant extracts as determined have been found to be 40 for DCM extract of fruit, 38 for Methanolic extract of fruit and 30 for the water extract of fruit. Similarly the leaf extracts posses IC50 value as 51, 47 and 37 respectively for DCM, Methanol and Water extracts. The IC50 values of various root extracts have been found to be 53, 50 and 48 respectively for DCM, Methanol and Water

    Peripheral arterial disease and osteoporosis in older adults: the Rancho Bernardo Study

    Get PDF
    We examined the association between peripheral arterial disease (PAD) and bone health in 1,332 adults. We found a weak association between PAD and osteoporosis and bone loss only in women, but the association was not independent of age. PAD was not associated with fractures in this community-based population. Increased rates of osteoporosis have been reported in patients with cardiovascular disease, suggesting a link between osteoporosis and atherosclerosis. We examined the association between PAD and bone health in 1,332 adults who attended a research visit in 1992–1996, when the ankle–brachial index (ABI), bone mineral density (BMD), and spine X-rays were obtained. A total of 837 participants attended a follow-up visit in 1997–2000. PAD defined by an ABI ≤ 0.90 was present in 15.4% of the women and 13.3% of the men. Prevalence of osteoporosis was significantly higher in women with PAD compared to women without PAD (p &lt; 0.05). During an average 4-year follow-up, women with PAD had a significantly higher rate of bone loss than women without PAD (p = 0.05). The associations were no longer significant after age adjustment. In men, PAD was not associated with osteoporosis, but men with PAD had lower BMD at the femoral neck than men without PAD (p = 0.03). PAD was not associated with osteoporotic fractures in either sex. We found a weak and age-dependent association between PAD and osteoporosis in women but not men. PAD was not associated with fractures in this community-based population

    Equation of state description of the dark energy transition between quintessence and phantom regimes

    Full text link
    The dark energy crossing of the cosmological constant boundary (the transition between the quintessence and phantom regimes) is described in terms of the implicitly defined dark energy equation of state. The generalizations of the models explicitly constructed to exhibit the crossing provide the insight into the cancellation mechanism which makes the transition possible.Comment: 3 pages, talk given at TAUP200

    Analytical results for string propagation near a Kaluza-Klein black hole

    Full text link
    This brief report presents analytical solutions to the equations of motion of a null string. The background spacetime is a magnetically charged Kaluza-Klein black hole. The string coordinates are expanded with the world-sheet velocity of light as an expansion parameter. It is shown that the zeroth order solutions can be expressed in terms of elementary functions in an appropriate large distance approximation. In addition, a class of exact solutions corresponding to the Pollard-Gross-Perry-Sorkin monopole case is also obtained.Comment: Revtex, 9 pages including two postscript figures, More detailed discussion and new references adde

    Quantum phantom cosmology

    Full text link
    We apply the formalism of quantum cosmology to models containing a phantom field. Three models are discussed explicitly: a toy model, a model with an exponential phantom potential, and a model with phantom field accompanied by a negative cosmological constant. In all these cases we calculate the classical trajectories in configuration space and give solutions to the Wheeler-DeWitt equation in quantum cosmology. In the cases of the toy model and the model with exponential potential we are able to solve the Wheeler-DeWitt equation exactly. For comparison, we also give the corresponding solutions for an ordinary scalar field. We discuss in particular the behaviour of wave packets in minisuperspace. For the phantom field these packets disperse in the region that corresponds to the Big Rip singularity. This thus constitutes a genuine quantum region at large scales, described by a regular solution of the Wheeler-DeWitt equation. For the ordinary scalar field, the Big-Bang singularity is avoided. Some remarks on the arrow of time in phantom models as well as on the relation of phantom models to loop quantum cosmology are given.Comment: 21 pages, 6 figure

    Observational constraints on the dark energy density evolution

    Full text link
    We constrain the evolution of the dark energy density from Cosmic Microwave Background, Large Scale Structure and Supernovae Ia measurements. While Supernovae Ia are most sensitive to the equation of state w0w_0 of dark energy today, the Cosmic Microwave Background and Large Scale Structure data best constrains the dark energy evolution at earlier times. For the parametrization used in our models, we find w0<0.8w_0 < -0.8 and the dark energy fraction at very high redshift Ωearly<0.03\Omega_{early} < 0.03 at 95 per cent confidence level.Comment: 5 pages, 10 figure
    corecore