24 research outputs found

    Effective Melanoma Immunotherapy in Mice by the Skin-Depigmenting Agent Monobenzone and the Adjuvants Imiquimod and CpG

    Get PDF
    Background: Presently melanoma still lacks adequate treatment options for metastatic disease. While melanoma is exceptionally challenging to standard regimens, it is suited for treatment with immunotherapy based on its immunogenicity. Since treatment-related skin depigmentation is considered a favourable prognostic sign during melanoma intervention, we here aimed at the reverse approach of directly inducing vitiligo as a shortcut to effective anti-melanoma immunity. Methodology and Principal Findings: We developed an effective and simple to use form of immunotherapy by combining the topical skin-bleaching agent monobenzone with immune-stimulatory imiquimod cream and cytosine-guanine oligodeoxynucleotides (CpG) injections (MIC therapy). This powerful new approach promptly induced a melanoma antigen-specific immune response, which abolished subcutaneous B16. F10 melanoma growth in up to 85% of C57BL/6 mice. Importantly, this regimen induced over 100 days of tumor-free survival in up to 60% of the mice, and forcefully suppressed tumor growth upon re-challenge either 65- or 165 days after MIC treatment cessation. Conclusions: MIC therapy is effective in eradicating melanoma, by vigilantly incorporating NK-, B-and T cells in its therapeutic effect. Based on these results, the MIC regimen presents a high-yield, low-cost and simple therapy, readily applicable in the clini

    Monobenzone-induced depigmentation: from enzymatic blockade to autoimmunity

    No full text
    Autoimmune side-effects such as vitiligo regularly occur during melanoma immunotherapy. As vitiligo development is associated with a superior prognosis, the active induction of vitiligo in melanoma patients can be a useful tactic. The potent skin-depigmenting agent monobenzone can be used successfully for this purpose. However, until recently, the mechanism of action behind monobenzone-induced skin depigmentation was unclear. Lately, the mechanistic basis for the augmented immunogenicity of monobenzone-exposed pigmented cells has been unveiled, and their active role in the induction of autoimmune T-cell-mediated vitiligo has become apparent. Here, we provide an immunological framework in which we condense this knowledge to an integrated theory of the generation of monobenzone-induced vitilig

    Inflammasome-Dependent Induction of Adaptive NK Cell Memory

    No full text
    Monobenzone is a pro-hapten that is exclusively metabolized by melanocytes, thereby haptenizing melanocyte-specific antigens, which results in cytotoxic autoimmunity specifically against pigmented cells. Studying monobenzone in a setting of contact hypersensitivity (CHS), we observed that monobenzone induced a long-lasting, melanocyte-specific immune response that was dependent on NK cells, yet fully intact in the absence of T- and B cells. Consistent with the concept of "memory NK cells," monobenzone-induced NK cells resided in the liver and transfer of these cells conferred melanocyte-specific immunity to naive animals. Monobenzone-exposed skin displayed macrophage infiltration and cutaneous lymph nodes showed an inflammasome-dependent influx of macrophages with a tissue-resident phenotype, coinciding with local NK cell activation. Indeed, macrophage depletion or the absence of the NLRP3 inflammasome, the adaptor protein ASC or interleukin-18 (IL-18) abolished monobenzone CHS, thereby establishing a non-redundant role for the NLRP3 inflammasome as a critical proinflammatory checkpoint in the induction of hapten-dependent memory NK cell

    Autoimmune Destruction of Skin Melanocytes by Perilesional T Cells from Vitiligo Patients

    Get PDF
    In vitiligo, cytotoxic T cells infiltrating the perilesional margin are suspected to be involved in the pathogenesis of the disease. However, it remains to be elucidated whether these T cells are a cause or a consequence of the depigmentation process. T cells we obtained from perilesional skin biopsies, were significantly enriched for melanocyte antigen recognition, compared with healthy skin-infiltrating T cells, and were reactive to melanocyte antigen-specific stimulation. Using a skin explant model, we were able to dissect the in situ activities of perilesional T cells in the effector phase of depigmentation. We show that these T cells could infiltrate autologous normally pigmented skin explants and efficiently kill melanocytes within this microenvironment. Interestingly, melanocyte apoptosis was accompanied by suprabasal keratinocyte apoptosis. Perilesional T cells did, however, not induce apoptosis in lesional skin, which is devoid of melanocytes, indicating the melanocyte-specific cytotoxic activity of these cells. Melanocyte killing correlated to local infiltration of perilesional T cells. Our data show that perilesional cytotoxic T cells eradicate pigment cells, the characteristic hallmark of vitiligo, thereby providing evidence of T cells being able to mediate targeted autoimmune tissue destruction

    Therapeutic implications of autoimmune vitiligo T cells

    No full text
    Vitiligo is an autoimmune disease presenting with progressive loss of skin pigmentation. The disease strikes 1% of the world population, generally during teenage years. The progressive loss of melanocytes from depigmenting vitiligo skin is accompanied by cellular infiltrates containing both CD4+ and CD8+ T lymphocytes. Infiltrating cytotoxic T cells with high affinity T cell receptors have likely escaped clonal deletion in the thymus, allowing such T cells to enter the circulation. Through the expression of CLA, these T cells home to the skin where they express type 1-cytokine profiles and mediate melanocyte apoptosis via the granzyme/perforin pathway. T cells found juxtapositionally apposed to remaining melanocytes can be isolated from the skin. Vitiligo T cells have demonstrated reactivity to antigens previously recognized as target antigens for T cells infiltrating melanoma tumors. In a comparison to existing melanoma-derived T cells, vitiligo T cells displayed superior reactivity towards melanoma cells. It is thought that genes encoding the TCRs expressed by vitiligo skin infiltrating T cells can be cloned and expressed in melanoma T cells, thereby generating a pool of circulating T cells with high affinity for their targets that can re-direct the immune response towards the tumo

    Skin-Depigmenting Agent Monobenzone Induces Potent T-Cell Autoimmunity toward Pigmented Cells by Tyrosinase Haptenation and Melanosome Autophagy

    Get PDF
    In this study, we report the previously unknown mechanism of inducing robust anti-melanoma immunity by the vitiligo-inducing compound monobenzone. We show monobenzone to increase melanocyte and melanoma cell immunogenicity by forming quinone-haptens to the tyrosinase protein and by inducing the release of tyrosinase-and melanoma antigen recognized by T cells-1 (MART-1)-containing CD63+ exosomes following melanosome oxidative stress induction. Monobenzone further augments the processing and shedding of melanocyte-differentiation antigens by inducing melanosome autophagy and enhanced tyrosinase ubiquitination, ultimately activating dendritic cells, which induced cytotoxic human melanoma-reactive T cells. These T cells effectively eradicate melanoma in vivo, as we have reported previously. Monobenzone thereby represents a promising and readily applicable compound for immunotherapy in melanoma patient
    corecore