252 research outputs found

    Topological Superconductivity in Multifold Fermion Metals

    Full text link
    Recently, multifold fermions characterized by band crossings with multifold degeneracy and Fermi surfaces with nontrivial Chern numbers have been discovered experimentally in AlPt[arXiv:1812.03310] and XSi(X=Rh,Co)[arXiv:1812.04466][arXiv:1901.03358][arXiv:1809.01312]. In this work, we largely expand the family of multifold fermion materials by pointing out that several well-studied noncentrosymmetric superconductors are indeed multifold fermion metals. Importantly, their normal state topological properties, which have been ignored in previous studies, play an important role in the superconducting properties. Taking Li2_2Pd3_3B and Li2_2Pt3_3B as examples, we found a large number of unconventional degenerate points, such as double spin-1, spin-3/2, Weyl and double Weyl topological band crossing points near the Fermi energy, which result in finite Chern numbers on Fermi surfaces. Long Fermi arc states in Li2_2Pd3_3B, originating from the nontrivial band topology were found. Importantly, it has been shown experimentally that Li2_2Pd3_3B and Li2_2Pt3_3B are fully gapped and gapless superconductors, respectively. By analyzing the possible pairing symmetries, we suggest that Li2_2Pd3_3B can be a DIII class topological superconductor with Majorana surface states, even though the spin-orbit coupling in Li2_2Pd3_3B is negligible. Interestingly, Li2_2Pt3_3B, being gapless, is likely to be a nodal topological superconductor with dispersionless surface Majorana modes. We further identified that several noncentrosymmetric superconductors, such as Mo3_3Al2_2C, PdBiSe, Y2_2C3_3 and La2_2C3_3, are multifold fermion superconductors whose normal state topological properties have been ignored in previous experimental and theoretical studies

    IoTSan: Fortifying the Safety of IoT Systems

    Full text link
    Today's IoT systems include event-driven smart applications (apps) that interact with sensors and actuators. A problem specific to IoT systems is that buggy apps, unforeseen bad app interactions, or device/communication failures, can cause unsafe and dangerous physical states. Detecting flaws that lead to such states, requires a holistic view of installed apps, component devices, their configurations, and more importantly, how they interact. In this paper, we design IoTSan, a novel practical system that uses model checking as a building block to reveal "interaction-level" flaws by identifying events that can lead the system to unsafe states. In building IoTSan, we design novel techniques tailored to IoT systems, to alleviate the state explosion associated with model checking. IoTSan also automatically translates IoT apps into a format amenable to model checking. Finally, to understand the root cause of a detected vulnerability, we design an attribution mechanism to identify problematic and potentially malicious apps. We evaluate IoTSan on the Samsung SmartThings platform. From 76 manually configured systems, IoTSan detects 147 vulnerabilities. We also evaluate IoTSan with malicious SmartThings apps from a previous effort. IoTSan detects the potential safety violations and also effectively attributes these apps as malicious.Comment: Proc. of the 14th ACM CoNEXT, 201

    Electrically Tunable Excitonic Light Emitting Diodes based on Monolayer WSe2 p-n Junctions

    Full text link
    Light-emitting diodes are of importance for lighting, displays, optical interconnects, logic and sensors. Hence the development of new systems that allow improvements in their efficiency, spectral properties, compactness and integrability could have significant ramifications. Monolayer transition metal dichalcogenides have recently emerged as interesting candidates for optoelectronic applications due to their unique optical properties. Electroluminescence has already been observed from monolayer MoS2 devices. However, the electroluminescence efficiency was low and the linewidth broad due both to the poor optical quality of MoS2 and to ineffective contacts. Here, we report electroluminescence from lateral p-n junctions in monolayer WSe2 induced electrostatically using a thin boron nitride support as a dielectric layer with multiple metal gates beneath. This structure allows effective injection of electrons and holes, and combined with the high optical quality of WSe2 it yields bright electroluminescence with 1000 times smaller injection current and 10 times smaller linewidth than in MoS2. Furthermore, by increasing the injection bias we can tune the electroluminescence between regimes of impurity-bound, charged, and neutral excitons. This system has the required ingredients for new kinds of optoelectronic devices such as spin- and valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional electro-optic modulators.Comment: 13 pages main text with 4 figures + 4 pages upplemental material

    Electrical Tuning of Valley Magnetic Moment via Symmetry Control

    Full text link
    Crystal symmetry governs the nature of electronic Bloch states. For example, in the presence of time reversal symmetry, the orbital magnetic moment and Berry curvature of the Bloch states must vanish unless inversion symmetry is broken. In certain 2D electron systems such as bilayer graphene, the intrinsic inversion symmetry can be broken simply by applying a perpendicular electric field. In principle, this offers the remarkable possibility of switching on/off and continuously tuning the magnetic moment and Berry curvature near the Dirac valleys by reversible electrical control. Here we demonstrate this principle for the first time using bilayer MoS2, which has the same symmetry as bilayer graphene but has a bandgap in the visible that allows direct optical probing of these Berry-phase related properties. We show that the optical circular dichroism, which reflects the orbital magnetic moment in the valleys, can be continuously tuned from -15% to 15% as a function of gate voltage in bilayer MoS2 field-effect transistors. In contrast, the dichroism is gate-independent in monolayer MoS2, which is structurally non-centrosymmetric. Our work demonstrates the ability to continuously vary orbital magnetic moments between positive and negative values via symmetry control. This represents a new approach to manipulating Berry-phase effects for applications in quantum electronics associated with 2D electronic materials.Comment: 13 pages main text + 4 pages supplementary material

    Distributed Stochastic Power Control in Ad-hoc Networks: A Nonconvex Case

    Get PDF
    Utility-based power allocation in wireless ad-hoc networks is inherently nonconvex because of the global coupling induced by the co-channel interference. To tackle this challenge, we first show that the globally optimal point lies on the boundary of the feasible region, which is utilized as a basis to transform the utility maximization problem into an equivalent max-min problem with more structure. By using extended duality theory, penalty multipliers are introduced for penalizing the constraint violations, and the minimum weighted utility maximization problem is then decomposed into subproblems for individual users to devise a distributed stochastic power control algorithm, where each user stochastically adjusts its target utility to improve the total utility by simulated annealing. The proposed distributed power control algorithm can guarantee global optimality at the cost of slow convergence due to simulated annealing involved in the global optimization. The geometric cooling scheme and suitable penalty parameters are used to improve the convergence rate. Next, by integrating the stochastic power control approach with the back-pressure algorithm, we develop a joint scheduling and power allocation policy to stabilize the queueing systems. Finally, we generalize the above distributed power control algorithms to multicast communications, and show their global optimality for multicast traffic.Comment: Contains 12 pages, 10 figures, and 2 tables; work submitted to IEEE Transactions on Mobile Computin

    Alternative Splicing of RNA Triplets Is Often Regulated and Accelerates Proteome Evolution

    Get PDF
    Thousands of human genes contain introns ending in NAGNAG (N any nucleotide), where both NAGs can function as 3′ splice sites, yielding isoforms that differ by inclusion/exclusion of three bases. However, few models exist for how such splicing might be regulated, and some studies have concluded that NAGNAG splicing is purely stochastic and nonfunctional. Here, we used deep RNA-Seq data from 16 human and eight mouse tissues to analyze the regulation and evolution of NAGNAG splicing. Using both biological and technical replicates to estimate false discovery rates, we estimate that at least 25% of alternatively spliced NAGNAGs undergo tissue-specific regulation in mammals, and alternative splicing of strongly tissue-specific NAGNAGs was 10 times as likely to be conserved between species as was splicing of non-tissue-specific events, implying selective maintenance. Preferential use of the distal NAG was associated with distinct sequence features, including a more distal location of the branch point and presence of a pyrimidine immediately before the first NAG, and alteration of these features in a splicing reporter shifted splicing away from the distal site. Strikingly, alignments of orthologous exons revealed a ~15-fold increase in the frequency of three base pair gaps at 3′ splice sites relative to nearby exon positions in both mammals and in Drosophila. Alternative splicing of NAGNAGs in human was associated with dramatically increased frequency of exon length changes at orthologous exon boundaries in rodents, and a model involving point mutations that create, destroy, or alter NAGNAGs can explain both the increased frequency and biased codon composition of gained/lost sequence observed at the beginnings of exons. This study shows that NAGNAG alternative splicing generates widespread differences between the proteomes of mammalian tissues, and suggests that the evolutionary trajectories of mammalian proteins are strongly biased by the locations and phases of the introns that interrupt coding sequences.Damon Runyon Cancer Research Foundation (DRG 2032-09)National Science Foundation (U.S.). (no. 0821391)United States. National Institutes of Healt

    Platinum-group elements, S, Se and Cu in highly depleted abyssal peridotites from the Mid-Atlantic Ocean Ridge (ODP Hole 1274A): Influence of hydrothermal and magmatic processes

    Get PDF
    Highly depleted harzburgites and dunites were recovered from ODP Hole 1274A, near the intersection between the Mid-Atlantic Ocean Ridge and the 15°20′N Fracture Zone. In addition to high degrees of partial melting, these peridotites underwent multiple episodes of melt-rock reaction and intense serpentinization and seawater alteration close to the seafloor. Low concentrations of Se, Cu and platinum-group elements (PGE) in harzburgites drilled at around 35-85 m below seafloor are consistent with the consumption of mantle sulfides after high degrees (>15-20 %) of partial melting and redistribution of chalcophile and siderophile elements into PGE-rich residual microphases. Higher concentrations of Cu, Se, Ru, Rh and Pd in harzburgites from the uppermost and lowest cores testify to late reaction with a sulfide melt. Dunites were formed by percolation of silica- and sulfur-undersaturated melts into low-Se harzburgites. Platinum-group and chalcophile elements were not mobilized during dunite formation and mostly preserve the signature of precursor harzburgites, except for higher Ru and lower Pt contents caused by precipitation and removal of platinum-group minerals. During serpentinization at low temperature (<250 °C) and reducing conditions, mantle sulfides experienced desulfurization to S-poor sulfides (mainly heazlewoodite) and awaruite. Contrary to Se and Cu, sulfur does not record the magmatic evolution of peridotites but was mostly added in hydrothermal sulfides and sulfate from seawater. Platinum-group elements were unaffected by post-magmatic low-temperature processes, except Pt and Pd that may have been slightly remobilized during oxidative seawater alteration
    corecore