9 research outputs found

    Protein-tyrosine Phosphatase H1 Controls Growth Hormone Receptor Signaling and Systemic Growth

    Get PDF
    Several protein-tyrosine phosphatases (PTPs) have been implicated in the control of growth hormone receptor (GHR) signaling, but none have been shown to affect growth in vivo. We have applied a battery of molecular and cellular approaches to test a family-wide panel of PTPs for interference with GHR signaling. Among the subset of PTPs that showed activity in multiple readouts, we selected PTP-H1/PTPN3 for further in vivo studies and found that mice lacking the PTP-H1 catalytic domain show significantly enhanced growth over their wild type littermates. In addition, PTP-H1 mutant animals had enhanced plasma and liver mRNA expression of insulin-like growth factor 1, as well as increased bone density and mineral content. These observations point to a controlling role for PTP-H1 in modulating GHR signaling and systemic growth through insulin-like growth factor 1 secretion

    Delayed rRNA Processing Results in Significant Ribosome Biogenesis and Functional Defects

    No full text
    mof6-1 was originally isolated as a recessive mutation in Saccharomyces cerevisiae which promoted increased efficiencies of programmed −1 ribosomal frameshifting and rendered cells unable to maintain the killer virus. Here, we demonstrate that mof6-1 is a unique allele of the histone deacetylase RPD3, that the deacetylase function of Rpd3p is required for controlling wild-type levels of frameshifting and virus maintenance, and that the closest human homolog can fully complement these defects. Loss of the Rpd3p-associated histone deacetylase function, either by mutants of rpd3 or loss of the associated gene product Sin3p or Sap30p, results in a delay in rRNA processing rather than in an rRNA transcriptional defect. This results in production of ribosomes having lower affinities for aminoacyl-tRNA and diminished peptidyltransferase activities. We hypothesize that decreased rates of peptidyl transfer allow ribosomes with both A and P sites occupied by tRNAs to pause for longer periods of time at −1 frameshift signals, promoting increased programmed −1 ribosomal frameshifting efficiencies and subsequent loss of the killer virus. The frameshifting defect is accentuated when the demand for ribosomes is highest, suggesting that rRNA posttranscriptional modification is the bottleneck in ribosome biogenesis

    Pembrolizumab plus pomalidomide and dexamethasone for patients with relapsed or refractory multiple myeloma (KEYNOTE-183): a randomised, open-label, phase 3 trial

    No full text
    BACKGROUND: Pomalidomide and dexamethasone is a standard of care for patients with multiple myeloma in whom bortezomib and lenalidomide treatment has failed. KEYNOTE-183 assessed efficacy and safety of pomalidomide and dexamethasone with or without pembrolizumab in patients with relapsed or refractory multiple myeloma. Here, we present the findings of an unplanned, ad-hoc interim analysis at the request of the US Food and Drug Administration (FDA). METHODS: KEYNOTE-183 was a randomised, open-label, phase 3 trial done at 97 medical centres across 11 countries (Australia, Canada, France, Germany, Israel, Italy, Japan, New Zealand, Norway, Spain, and USA). Patients aged at least 18 years with multiple myeloma, an Eastern Cooperative Oncology Group (ECOG) performance status 0 or 1, previously treated with at least two lines of therapy (excluding pomalidomide) and refractory to the last line were randomly assigned 1:1 to the pembrolizumab plus pomalidomide and dexamethasone group or the pomalidomide and dexamethasone group via an interactive voice response or integrated web response system. Patients received oral pomalidomide 4 mg daily on days 1-21 and oral low-dose dexamethasone 40 mg on days 1, 8, 15, and 22 in 28-day cycles, with or without intravenous pembrolizumab 200 mg every 3 weeks. The dual primary endpoints were progression-free survival and overall survival. Efficacy was assessed in all randomly assigned patients and safety was assessed in patients who received at least one dose of study treatment. The trial is registered at ClinicalTrials.gov, number NCT02576977, and it is closed for accrual. FINDINGS: Between Jan 18, 2016, and June 7, 2017, 249 patients were randomly assigned to either the pembrolizumab plus pomalidomide and dexamethasone group (n=125) or the pomalidomide and dexamethasone group (n=124). On July 3, 2017, the FDA established that risks associated with the triple combination outweighed benefits and halted the study. Median follow-up was 8\ub71 months (IQR 4\ub75-10\ub79). Median progression-free survival was 5\ub76 months (95% CI 3\ub77-7\ub75) in the pembrolizumab plus pomalidomide and dexamethasone group versus 8\ub74 months (5\ub79-not reached) in the pomalidomide and dexamethasone group; progression-free survival estimates at 6 months were 48% (95% CI 37-58) versus 60% (49-69) at 6 months (hazard ratio [HR] 1\ub753; 95% CI 1\ub705-2\ub722; p=0\ub798). Median overall survival was not reached (95% CI 12\ub79-not reached) versus 15\ub72 months (12\ub77-not reached; HR 1\ub761; 95% CI 0\ub791-2\ub785; p=0\ub795); overall survival estimates at 6 months were 82% (95% CI 74-88) versus 90% (82-95). Serious adverse events occurred in 75 (63%) of 120 patients in the pembrolizumab plus pomalidomide and dexamethasone group versus 56 (46%) of 121 patients in the pomalidomide and dexamethasone group. Four (3%) treatment-related deaths occurred in the pembrolizumab plus pomalidomide and dexamethasone group (one each of unknown cause, neutropenic sepsis, myocarditis, and Stevens-Johnson syndrome); myocarditis and Stevens-Johnson syndrome were considered related to pembrolizumab. No treatment-related deaths were reported in the pomalidomide and dexamethasone group. INTERPRETATION: The results from this unplanned, FDA-requested, interim analysis showed that the benefit-risk profile of pembrolizumab plus pomalidomide and dexamethasone is unfavourable for patients with relapsed or refractory multiple myeloma. FUNDING: Merck Sharp & Dohme, a subsidiary of Merck & Co (Kenilworth, NJ, USA)
    corecore