190 research outputs found

    Spectroscopic analysis of Pu-bearing compounds in double-walled cells

    Get PDF
    Spectroscopic analysis of radiological materials has been historically limited to radiological labs with older or less advanced scientific instrumentation. The development of double-walled cells (DWCs) at the Savannah River National Laboratory (SRNL) has enabled Pu-bearing compounds to be removed from radiological laboratories and studied in our radiologically clean spectroscopy laboratory with state-of-the-art instrumentation. In this manuscript, we discuss the contributions of DWCs that have allowed the application of Raman spectroscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), diffuse reflectance spectroscopy (DRS) in the shortwave infrared, and gamma spectroscopy at SRNL. Significant advances have been made in the understanding of the thermal decomposition of Pu(III) and Pu(IV) oxalates, alpha-induced damage to the PuO2 crystal lattice, and the effect of calcination temperatures on the quality of PuO2. These techniques have enabled methods to conduct PuO2 age dating since last calcination and estimate the calcination temperature with Raman spectroscopy and DRS. Additional spectroscopic information measured with DRIFTS has enabled the observation of the evolution of carbon species with calcination temperature, while gamma spectroscopy provides information on age dating since last purification

    Strong Ultraviolet Pulse From a Newborn Type Ia Supernova

    Full text link
    Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs. Although they are used empirically to measure cosmological distances, the nature of their progenitors remains mysterious, One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion. Here we report observations of strong but declining ultraviolet emission from a Type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star, and therefore provides evidence that some Type Ia supernovae arise from the single degenerate channel.Comment: Accepted for publication on the 21 May 2015 issue of Natur

    Spectroscopy of High-Redshift Supernovae from the ESSENCE Project: The First Two Years

    Get PDF
    We present the results of spectroscopic observations of targets discovered during the first two years of the ESSENCE project. The goal of ESSENCE is to use a sample of ~200 Type Ia supernovae (SNe Ia) at moderate redshifts (0.2 < z < 0.8) to place constraints on the equation of state of the Universe. Spectroscopy not only provides the redshifts of the objects, but also confirms that some of the discoveries are indeed SNe Ia. This confirmation is critical to the project, as techniques developed to determine luminosity distances to SNe Ia depend upon the knowledge that the objects at high redshift are the same as the ones at low redshift. We describe the methods of target selection and prioritization, the telescopes and detectors, and the software used to identify objects. The redshifts deduced from spectral matching of high-redshift SNe Ia with low-redshift SNe Ia are consistent with those determined from host-galaxy spectra. We show that the high-redshift SNe Ia match well with low-redshift templates. We include all spectra obtained by the ESSENCE project, including 52 SNe Ia, 5 core-collapse SNe, 12 active galactic nuclei, 19 galaxies, 4 possibly variable stars, and 16 objects with uncertain identifications.Comment: 38 pages, 9 figures (many with multiple parts), submitted to A

    High Throughput Discovery of Lightweight Corrosion-Resistant Compositionally Complex Alloys

    Full text link
    Compositionally complex alloys hold the promise of simultaneously attaining superior combinations of properties such as corrosion resistance, light-weighting, and strength. Achieving this goal is a challenge due in part to a large number of possible compositions and structures in the vast alloy design space. High throughput methods offer a path forward, but a strong connection between the synthesis of a given composition and structure with its properties has not been fully realized to date. Here we present the rapid identification of light weight highly corrosion-resistant alloys based on combinations of Al and Cr in a Cantor-like base alloy (Al-Co-Cr-Fe-Ni). Previously unstudied alloy stoichiometries were identified using a combination of high throughput experimental screening coupled with key metallurgical and electrochemical corrosion tests, identifying alloys with excellent passivation behavior. Importantly, the electrochemical impedance modulus of the exposure-modified, air-formed film at the corrosion potential was found as an accurate non-destructive predictor of corrosion and passivation characteristics. Multi-element EXAFS analyses connected more ordered type chemical short range order in the Ni-Al 1st nn shell to poorer corrosion. This report underscores the utility of high throughput exploration of compositionally complex alloys for the identification and rapid screening of vast stoichiometric space

    Using Line Profiles to Test the Fraternity of Type Ia Supernovae at High and Low Redshifts

    Get PDF
    Using archival data of low-redshift (z < 0.01) Type Ia supernovae (SN Ia) and recent observations of high-redshift (0.16 < z <0.64; Matheson et al. 2005) SN Ia, we study the "uniformity'' of the spectroscopic properties of nearby and distant SN Ia. We find no difference in the measures we describe here. In this paper, we base our analysis solely on line-profile morphology, focusing on measurements of the velocity location of maximum absorption (vabs) and peak emission (vpeak). We find that the evolution of vabs and vpeak for our sample lines (Ca II 3945, Si II 6355, and S II 5454, 5640) is similar for both the low- and high-redshift samples. We find that vabs for the weak S II 5454, 5640 lines, and vpeak for S II 5454, can be used to identify fast-declining [dm15 > 1.7] SN Ia, which are also subluminous. In addition, we give the first direct evidence in two high-z SN Ia spectra of a double-absorption feature in Ca II 3945, an event also observed, though infrequently, in low-redshift SN Ia spectra (6/22 SN Ia in our local sample). We report for the first time the unambiguous and systematic intrinsic blueshift of peak emission of optical P-Cygni line profiles in Type Ia spectra, by as much as 8000 km/s. All the high-z SN Ia analyzed in this paper were discovered and followed up by the ESSENCE collaboration, and are now publicly available.Comment: 28 pages (emulateapj), 15 figures; accepted for publication in A

    Berkeley Supernova Ia Program I: Observations, Data Reduction, and Spectroscopic Sample of 582 Low-Redshift Type Ia Supernovae

    Get PDF
    In this first paper in a series we present 1298 low-redshift (z\leq0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 through 2008 as part of the Berkeley SN Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have a typical wavelength range of 3300-10,400 Ang., roughly twice as wide as spectra from most previously published datasets. We present our observing and reduction procedures, and we describe the resulting SN Database (SNDB), which will be an online, public, searchable database containing all of our fully reduced spectra and companion photometry. In addition, we discuss our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry 2007), utilising our newly constructed set of SNID spectral templates. These templates allow us to accurately classify our entire dataset, and by doing so we are able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, our dataset includes spectra of nearly 90 spectroscopically peculiar SNe Ia. We also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. [Abridged]Comment: 34 pages, 11 figures, 11 tables, revised version, re-submitted to MNRAS. Spectra will be released in January 2013. The SN Database homepage (http://hercules.berkeley.edu/database/index_public.html) contains the full tables, plots of all spectra, and our new SNID template
    • …
    corecore