1,314 research outputs found

    Generation of orthotopic patient-derived xenografts from gastrointestinal stromal tumor.

    Get PDF
    BackgroundGastrointestinal stromal tumor (GIST) is the most common sarcoma and its treatment with imatinib has served as the paradigm for developing targeted anti-cancer therapies. Despite this success, imatinib-resistance has emerged as a major problem and therefore, the clinical efficacy of other drugs has been investigated. Unfortunately, most clinical trials have failed to identify efficacious drugs despite promising in vitro data and pathological responses in subcutaneous xenografts. We hypothesized that it was feasible to develop orthotopic patient-derived xenografts (PDXs) from resected GIST that could recapitulate the genetic heterogeneity and biology of the human disease.MethodsFresh tumor tissue from three patients with pathologically confirmed GISTs was obtained immediately following tumor resection. Tumor fragments (4.2-mm3) were surgically xenografted into the liver, gastric wall, renal capsule, and pancreas of immunodeficient mice. Tumor growth was serially assessed with ultrasonography (US) every 3-4 weeks. Tumors were also evaluated with positron emission tomography (PET). Animals were sacrificed when they became moribund or their tumors reached a threshold size of 2500-mm3. Tumors were subsequently passaged, as well as immunohistochemically and histologically analyzed.ResultsHerein, we describe the first model for generating orthotopic GIST PDXs. We have successfully xenografted three unique KIT-mutated tumors into a total of 25 mice with an overall success rate of 84% (21/25). We serially followed tumor growth with US to describe the natural history of PDX growth. Successful PDXs resulted in 12 primary xenografts in NOD-scid gamma or NOD-scid mice while subsequent successful passages resulted in 9 tumors. At a median of 7.9 weeks (range 2.9-33.1 weeks), tumor size averaged 473 ± 695-mm³ (median 199-mm3, range 12.6-2682.5-mm³) by US. Furthermore, tumor size on US within 14 days of death correlated with gross tumor size on necropsy. We also demonstrated that these tumors are FDG-avid on PET imaging, while immunohistochemically and histologically the PDXs resembled the primary tumors.ConclusionsWe report the first orthotopic model of human GIST using patient-derived tumor tissue. This novel, reproducible in vivo model of human GIST may enhance the study of GIST biology, biomarkers, personalized cancer treatments, and provide a preclinical platform to evaluate new therapeutic agents for GIST

    Pharmacist and Data-driven Quality Improvement in Primary Care (P-DQIP):A qualitative study of anticipated implementation factors informed by the Theoretical Domains Framework

    Get PDF
    Objectives: The quality and safety of drug therapy in primary care are global concerns. The Pharmacist and Data driven Quality Improvement in Primary care (P-DQIP) intervention aims to improve prescribing safety via an informatics tool which facilitates proactive management of drug therapy risks (DTRs) by health-board employed pharmacists with established roles in general practices. Study objectives were (1) to identify and prioritise factors that could influence P-DQIP implementation from the perspective of practice pharmacists, and (2) to identify potentially effective, acceptable and feasible strategies to support P-DQIP implementation. Design: Semi-structured face-to-face interviews using a Theoretical Domains Framework (TDF) informed topic guide. The framework method was used for data analysis. Identified implementation factors were prioritised for intervention based on research team consensus. Candidate intervention functions, behaviour change techniques (BCTs) and policies targeting these were identified from the Behaviour Change Wheel. The final intervention content and modes of delivery were agreed with local senior pharmacists. Setting: General practices from three Health and Social Care Partnerships (HSCPs) in NHS Tayside. Participants: 14 NHS employed practice pharmacists. Results: Identified implementation factors were linked to thirteen theoretical domains (all except intentions) and six (skill, memory/attention/decision-making, behavioural regulation, reinforcement, environmental context/resources, social influences) were prioritised. Three intervention functions (training, enablement, and environmental restructuring) were relevant and were served by two policy categories (guidelines, communication/marketing) and eight BCTs (Instructions on how to perform a behaviour, problem solving, action planning, prompt/cues, goal setting, self-monitoring, feedback, restructuring the social environment). Intervention components encompass an informatics tool, written educational material, a workshop for pharmacists, promotional activities, and small financial incentives. Conclusions: This study explored pharmacists’ perceptions of implementation factors which could influence management of DTRs in general practices to inform implementation of P-DQIP, which will initially be implemented in one Scottish health board with parallel evaluation of effectiveness and implementation

    Potable Water Reuse through Advanced Membrane Technology

    Full text link
    © 2018 American Chemical Society. Recycling water from municipal wastewater offers a reliable and sustainable solution to cities and regions facing shortage of water supply. Places including California and Singapore have developed advanced water reuse programs as an integral part of their water management strategy. Membrane technology, particularly reverse osmosis, has been playing a key role in producing high quality recycled water. This feature paper highlights the current status and future perspectives of advanced membrane processes to meet potable water reuse. Recent advances in membrane materials and process configurations are presented and opportunities and challenges are identified in the context of water reuse

    kNN Classification of Epilepsy Brainwaves

    Get PDF
    Epilepsy is a disorder of the normal brain function by the existence of abnormal synchronous discharges in large groups of neurons in brain structures and it is estimated about 1% of the world’s population suffers from this disease [Tzallas et al., 2009]. It has been reported that the brainwave of Epilepsy patient mostly in sharp, spike and complex wave pattern [Tzallas et al., 2009]. In addition, Epilepsy brainwaves pattern lies in wide variety of Electroencephalogram (EEG) signals in formed of low-amplitude and polyspikes activity [Vargas et al., 2011]. Generally, this disease was examined through the brainwaves or EEG signals by clinical neurulogists. An EEG is a device to record the brainwaves in term of electrical activity from the brain. Brain patterns from wave shapes that are commonly sinusoidal and measured from peak to peak that range from 0.5 ÎŒV to 100 ÎŒV in amplitude. Moreover, the brainwaves have been categorized into four frequency bands, Beta (>13 Hz), Alpha (8-13 Hz), Theta (4-8 Hz) and Delta (0.5-4 Hz). All the frequency bands will be used to characterize the Epilepsy brainwave in terms of amplitude (voltage) and frequency [Mustafa et al., 2013]. The Epilepsy brainwaves were downloaded from http://www.vis.caltech.edu/~rodri/data.htm of Fp1 and Fp2 channels which is from rats. The brainwaves consists Epilepsy and non-Epilepsy samples. Then, the brainwaves were pre-processed to remove artefact (noise). Various methods had been introduced to detect spike-wave discharge in Epilepsy patient brainwave. Brainwave is nonstationary signal, therefore, time-frequency analysis is appropriate methods to analyse the signals[Tzallas et al., 2009, Vargas et al., 2011]. One of the most popular time-frequency analyses is ShortTime Fourier Transform (STFT). After the brainwaves were pre-processed, STFT was employed to the clean brainwaves. The STFT spectrogram was generated for four frequency bands of the samples
    • 

    corecore