352 research outputs found

    Testing a health research instrument to develop a statewide survey on maternity care

    Get PDF
    Partnerships between researchers and end users are an important strategy for research uptake in policy and practice. This paper describes how collaboration between an academic research organisation (the Kolling Institute) and a government performance reporting agency (the NSW Bureau of Health Information (BHI)), contributed to the development of a new statewide maternity care survey for NSW.NHMR

    Intrathymic expression of Flt3 ligand enhances thymic recovery after irradiation

    Get PDF
    Hematopoietic stem cell transplantation (HSCT) requires conditioning treatments such as irradiation, which leads to a severely delayed recovery of T cell immunity and constitutes a major complication of this therapy. Currently, our understanding of the mechanisms regulating thymic recovery is limited. It is known that a subpopulation of bone marrow (BM)–derived thymic immigrant cells and the earliest intrathymic progenitors express the FMS-like tyrosine kinase 3 (Flt3) receptor; however, the functional significance of this expression in the thymus is not known. We used the BM transplant model to investigate the importance of Flt3 ligand (FL) for the regeneration of the T cell compartment. We show that FL is expressed in the adult mouse thymus on the surface of perivascular fibroblasts. These cells surround the proposed thymic entry site of Flt3 receptor–positive T cell progenitors. After irradiation, perivascular FL expression is up-regulated and results in an enhanced recovery of thymic cellularity. Thymic grafting experiments confirm an intrathymic requirement for FL. Collectively, these results show that thymic stromal cell–mediated FL–Flt3 receptor interactions are important in the reconstitution of thymopoiesis early after lethal irradiation and HSCT, and provide a functional relevance to the expression of the Flt3 receptor on intrathymic T cell progenitors

    Extremism propagation in social networks with hubs

    No full text
    One aspect of opinion change that has been of academic interest is the impact of people with extreme opinions (extremists) on opinion dynamics. An agent-based model has been used to study the role of small-world social network topologies on general opinion change in the presence of extremists. It has been found that opinion convergence to a single extreme occurs only when the average number of network connections for each individual is extremely high. Here, we extend the model to examine the effect of positively skewed degree distributions, in addition to small-world structures, on the types of opinion convergence that occur in the presence of extremists. We also examine what happens when extremist opinions are located on the well-connected nodes (hubs) created by the positively skewed distribution. We find that a positively skewed network topology encourages opinion convergence on a single extreme under a wider range of conditions than topologies whose degree distributions were not skewed. The importance of social position for social influence is highlighted by the result that, when positive extremists are placed on hubs, all population convergence is to the positive extreme even when there are twice as many negative extremists. Thus, our results have shown the importance of considering a positively skewed degree distribution, and in particular network hubs and social position, when examining extremist transmission

    Circular orbits and spin in black-hole initial data

    Get PDF
    The construction of initial data for black-hole binaries usually involves the choice of free parameters that define the spins of the black holes and essentially the eccentricity of the orbit. Such parameters must be chosen carefully to yield initial data with the desired physical properties. In this paper, we examine these choices in detail for the quasiequilibrium method coupled to apparent-horizon/quasiequilibrium boundary conditions. First, we compare two independent criteria for choosing the orbital frequency, the "Komar-mass condition" and the "effective-potential method," and find excellent agreement. Second, we implement quasi-local measures of the spin of the individual holes, calibrate these with corotating binaries, and revisit the construction of non-spinning black hole binaries. Higher-order effects, beyond those considered in earlier work, turn out to be important. Without those, supposedly non-spinning black holes have appreciable quasi-local spin; furthermore, the Komar-mass condition and effective potential method agree only when these higher-order effects are taken into account. We compute a new sequence of quasi-circular orbits for non-spinning black-hole binaries, and determine the innermost stable circular orbit of this sequence.Comment: 24 pages, 17 figures, accepted for publication in Physical Review D, revtex4; Fixed error in computing proper separation and updated figures and tables accordingly, added reference to Sec. IV.A, fixed minor error in Sec. IV.B, added new data to Tables IV and V, fixed 1 reference, fixed error in Eq. (A7b), included minor changes from PRD editin

    The N2K Consortium. II. A Transiting Hot Saturn Around HD 149026 With a Large Dense Core

    Get PDF
    Doppler measurements from Subaru and Keck have revealed radial velocity variations in the V=8.15, G0IV star HD 149026 consistent with a Saturn-Mass planet in a 2.8766 day orbit. Photometric observations at Fairborn Observatory have detected three complete transit events with depths of 0.003 mag at the predicted times of conjunction. HD 149026 is now the second brightest star with a transiting extrasolar planet. The mass of the star, based on interpolation of stellar evolutionary models, is 1.3 +/- 0.1 solar masses; together with the Doppler amplitude, K=43.3 m s^-1, we derive a planet mass Msin(i)=0.36 Mjup, and orbital radius of 0.042 AU. HD 149026 is chromospherically inactive and metal-rich with spectroscopically derived [Fe/H]=+0.36, Teff=6147 K, log g=4.26 and vsin(i)=6.0 km s^-1. Based on Teff and the stellar luminosity of 2.72 Lsun, we derive a stellar radius of 1.45 Rsun. Modeling of the three photometric transits provides an orbital inclination of 85.3 +/- 1.0 degrees and (including the uncertainty in the stellar radius) a planet radius of 0.725 +/- 0.05 Rjup. Models for this planet mass and radius suggest the presence of a ~67 Mearth core composed of elements heavier than hydrogen and helium. This substantial planet core would be difficult to construct by gravitational instability.Comment: 25 pages, 5 figures, accepted by the Astrophysical Journa

    The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen

    Get PDF
    Background Aeromonas salmonicida subsp. salmonicida is a Gram-negative bacterium that is the causative agent of furunculosis, a bacterial septicaemia of salmonid fish. While other species of Aeromonas are opportunistic pathogens or are found in commensal or symbiotic relationships with animal hosts, A. salmonicida subsp. salmonicida causes disease in healthy fish. The genome sequence of A. salmonicida was determined to provide a better understanding of the virulence factors used by this pathogen to infect fish. Results The nucleotide sequences of the A. salmonicida subsp. salmonicida A449 chromosome and two large plasmids are characterized. The chromosome is 4,702,402 bp and encodes 4388 genes, while the two large plasmids are 166,749 and 155,098 bp with 178 and 164 genes, respectively. Notable features are a large inversion in the chromosome and, in one of the large plasmids, the presence of a Tn21 composite transposon containing mercury resistance genes and an In2 integron encoding genes for resistance to streptomycin/spectinomycin, quaternary ammonia compounds, sulphonamides and chloramphenicol. A large number of genes encoding potential virulence factors were identified; however, many appear to be pseudogenes since they contain insertion sequences, frameshifts or in-frame stop codons. A total of 170 pseudogenes and 88 insertion sequences (of ten different types) are found in the A. salmonicida genome. Comparison with the A. hydrophila ATCC 7966T genome reveals multiple large inversions in the chromosome as well as an approximately 9% difference in gene content indicating instances of single gene or operon loss or gain. A limited number of the pseudogenes found in A. salmonicida A449 were investigated in other Aeromonas strains and species. While nearly all the pseudogenes tested are present in A. salmonicida subsp. salmonicida strains, only about 25% were found in other A. salmonicida subspecies and none were detected in other Aeromonas species. Conclusion Relative to the A. hydrophila ATCC 7966T genome, the A. salmonicida subsp. salmonicida genome has acquired multiple mobile genetic elements, undergone substantial rearrangement and developed a significant number of pseudogenes. These changes appear to be a consequence of adaptation to a specific host, salmonid fish, and provide insights into the mechanisms used by the bacterium for infection and avoidance of host defence systems.Peer reviewed: YesNRC publication: Ye

    Recurrent Tissue-Specific Mtdna Mutations are Common in Humans

    Get PDF
    Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney, liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions. The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific positive selection, probably through replication advantage

    Correction: Computationally guided discovery of a reactive, hydrophilic: Trans -5-oxocene dienophile for bioorthogonal labeling:(Organic and Biomolecular Chemistry (2017) 15 (6640-6644) DOI: 10.1039/C7OB01707C)

    Get PDF
    Correction for ‘Computationally guided discovery of a reactive, hydrophilic trans-5-oxocene dienophile for bioorthogonal labeling’ by William D. Lambert et al., Org. Biomol. Chem., 2017, 15, 6640–6644
    • …
    corecore