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Abstract

Mitochondrial DNA (mtDNA) variation can affect phenotypic variation; therefore, knowing its distribution within and among
individuals is of importance to understanding many human diseases. Intra-individual mtDNA variation (heteroplasmy) has
been generally assumed to be random. We used massively parallel sequencing to assess heteroplasmy across ten tissues
and demonstrate that in unrelated individuals there are tissue-specific, recurrent mutations. Certain tissues, notably kidney,
liver and skeletal muscle, displayed the identical recurrent mutations that were undetectable in other tissues in the same
individuals. Using RFLP analyses we validated one of the tissue-specific mutations in the two sequenced individuals and
replicated the patterns in two additional individuals. These recurrent mutations all occur within or in very close proximity to
sites that regulate mtDNA replication, strongly implying that these variations alter the replication dynamics of the mutated
mtDNA genome. These recurrent variants are all independent of each other and do not occur in the mtDNA coding regions.
The most parsimonious explanation of the data is that these frequently repeated mutations experience tissue-specific
positive selection, probably through replication advantage.
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Introduction

Mitochondrial DNA (mtDNA) heteroplasmy is commonly

thought to be the product of either maternal inheritance [1] or

rare, random somatic mutations that undergo subsequent expan-

sion within an individual via genetic drift [2,3]. Inherited

heteroplasmy should be present in many, but perhaps not all,

tissues while somatic mutations spread only as a result of cell

division subsequent to the mutation event. Somatic mutations will

be restricted to those cells or tissues derived from a common

progenitor, and should follow patterns of development. Such intra-

individual patterns should therefore differ among individuals as a

function of where and when the initial mutation occurred.

Under these standard models, both inherited and somatic

heteroplasmies should differ among unrelated individuals. How-

ever, until recent advances in sequencing technology it was

impossible to assay low levels of heteroplasmy across the entire

mitochondrial genome. We applied massively parallel sequencing

technology to test these models by deeply sequencing the same ten

tissues from two unrelated individuals. Unexpectedly we found

that certain tissues, notably kidney, liver and skeletal muscle, have

recurrent mtDNA mutations that were undetectable in other

tissues in the same individuals. These mutations were found across

unrelated individuals in these same tissues. Neither the maternal

inheritance nor the random somatic mutation models explain the

observed patterns of recurrent mtDNA heteroplasmy. The

common recurrence of these tissue-specific mutations indicates a

completely different model of mtDNA heteroplasmy, namely a

decidedly non-random process that results in particular mutations,

but only in specific tissues.

Results

Sequencing, Coverage and Copy Number
Next generation sequencing provides several advantages over

previous methods in that it allows detection of very low

heteroplasmy levels across the entire mtDNA genome without

having to target specific sites. We sequenced mtDNA from 10

PLOS Genetics | www.plosgenetics.org 1 November 2013 | Volume 9 | Issue 11 | e1003929



tissues (kidney, lung, liver, small bowel, large bowel, skeletal

muscle, spleen, brain white matter, skin above belt and skin below

belt) obtained at autopsy from two cancer-free individuals (Text

S1). In brief, mtDNA sequences were generated as 100 nt paired-

end reads on Illumina HiSeq 2000 machines, were aligned to the

human reference genome rCRS [4] using BWA [5], and then were

locally realigned and recalibrated using GATK [6]. Variants were

reported as heteroplasmic if their frequencies were $1% on both

strands from reads with a mapping quality score $30. We further

eliminated variants with any of the following artifacts: strand bias,

low average base quality score, or clustering at read ends. Strand

bias was evaluated at both base pair and motif levels. We identified

20 heteroplasmic sites with mutation levels .1% in our two

subjects (Table 1).

The coverage of mtDNA sequencing varied across tissues,

ranging from over 7,000 to almost 80,000 (Figure 1A). By

comparing mtDNA coverage to that for autosomal chromosomes,

we estimated the mtDNA copy number per cell for each sample

(Figure 1B). The two subjects had similar estimated mtDNA copy

numbers in each tissue with values consistent with expectations

based on previous data, ranging from a few hundred mtDNA per

cell in spleen to a few thousand in the skeletal muscle [7], liver, and

kidney.

Both subjects died of myocardial infarction and had no evidence

of cancer or occult cancer. Subject 1 was a male, age 57 years,

while subject 2 was a female, age 71 years (Table 2). This age and

gender difference may explain the difference in mtDNA copy

number in skeletal muscle between the two subjects.

Recurrence of Site-Specific Heteroplasmy
Unexpectedly, we found eight sites to be heteroplasmic in the

same tissues in both of our subjects (Figure 2). Contamination was

unlikely since the pattern of these sites fit no known haplogroup,

and the samples from the two subjects were collected at different

times and sequenced at different facilities (see Materials and

Methods). Most of these variants exist in the general population

but are rare (Table S2) [8]. Some of these variants have been

previously reported as being heteroplasmic in these same tissues

but the recurrence and tissue-specificity of these mtDNA

variations was not discussed [9]. In the four unrelated individuals

combined from our study and that of He et al [9] there were 10

recurrent mutations. All of the recurrent mutations lay within the

mtDNA control region, and nine of the ten recurrent mutations

occurred in multiple individuals but only in specific tissues (site

16093 was the only exception and this mutation was found in a

wide range of tissues). Six of the recurrent mutation sites were

observed in both studies (Figure 2). Surprisingly, these recurrent

tissue-specific mutations are all close to regulatory sites for mtDNA

replication, indicating that these variations are likely to alter the

replication dynamics of the mutated mtDNA molecules.

Three of the ten tissues studied (liver, kidney and skeletal

muscle) harbored multiple mtDNA mutations that were shared

across two or more of the four individuals combined from both

studies (Figure 2). Mutations at sites 60 and 72 occurred in liver

and kidney in both studies, while mutations at sites 94 and 203

were repeatedly detected in liver and/or kidney only in our

subjects. Of these mutations, three sites (60, 72 and 94) when

present in an individual, always occurred in both liver and kidney.

Another three occurred in skeletal muscle of all four patients (sites

64, 189 and 408). Heteroplasmy at positions 189 and 408 has been

found in skeletal muscle of the elderly [10]. A mutation at site 67

was found only in skeletal muscle in our two subjects. There was

no observable linkage disequilibrium among the sites (all pairwise

r2,0.007), indicating that these are independent mutations and

are not due to contamination. Heteroplasmy for these tissue-

specific recurrent mutations ranged from 1–21%, but was not

detected in the other tissues. Strikingly, the level of heteroplasmy

was similar across individuals in the same tissues (Figure 2). The

depth of sequence coverage in these tissues (skeletal muscle, liver

and kidney) ranged from 27,000–76,0006 (Figure 1A), providing

high confidence in our observation of heteroplasmy in these

samples. Of the tissues we examined (with the notable exception of

brain white matter), skeletal muscle, liver and kidney are the ones

most often affected by mitochondrial disease [11].

Although the entire mtDNA genome was sequenced to high

depth, we found no single base pair substitutions outside the

control region that were repeated between individuals. The

common 4977 deletion [12,13,14] was found in many tissues as

expected. Here we have focused only on those heteroplasmic sites

common to multiple subjects; the full list of identified hetero-

plasmic sites is given in Table 1. These data clearly indicate a non-

random distribution (6.0e24,p,6.0e26) of recurrent heteroplas-

mic mutations that flank important regulatory elements for

mtDNA replication (Figure 2). Several of the repeated variants

were clustered (sites 60–72) near a recently reported origin of

replication for the H strand [15,16] at sites 54–57. Three of the

other repeated mutations (189, 203 and 16093) occur very near

the boundaries of the displacement loop [15]. Finally, site 408,

which was heteroplasmic in the skeletal muscle of all four

individuals, lies within the L strand promoter that initiates the

RNA primer for mtDNA replication.

One variant, 16093, was unusual in that it was observed in all

tested tissues in one subject from each study, with tissue-specific

heteroplasmy levels that were strikingly similar across these two

individuals (Figure 3; r = 0.93, p,0.003). These subjects were of

similar age (59 and 57 years), so it is possible that the 16093

heteroplasmy increases with age at different rates in different

tissues, leading to the similar heteroplasmy levels across tissues in

these subjects. The 16093 site lies within a loop of a predicted

large secondary structure of the mtDNA and is known to be hyper-

mutable [17]. Individuals with the 16093C variant in blood tend

to have C/T heteroplasmy in buccal cells [18]. In one of our

subjects and in patient 11 from He et al. [9], the 16093C variant is

the major allele in most tissues (except muscle), and these are the

same two individuals who have widespread 16093T/C hetero-

plasmy across all tested tissues (Figure 2). The similar, tissue-

dependent heteroplasmy levels at 16093 reinforce the observation

that heteroplasmy levels at other sites are also comparable across

individuals (Figures 2 and 3).

Repeated Indel Mutations
We also found two insertion/deletion (indel) somatic mutations

that were repeated across the two sequenced subjects in a tissue-

specific pattern. Both are length variations in polynucleotide tracts.

Author Summary

DNA mutations are expected to be formed randomly, thus
any reproducible pattern of DNA somatic mutations across
multiple individuals or even across organs within each
individual is highly unexpected. Using next generation
sequencing of multiple tissues from the same individuals
we found several somatic mutations in mitochondrial DNA
that appear in a heteroplasmic state in all individuals
examined, but only in particular tissues. These mutations
were only found in known regions of replication control
for the mitochondrial DNA. These data imply the presence
of tissue-specific positive selection for these variants.

Recurrent Tissue-Specific mtDNA Mutations
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The human mtDNA reference sequence (rCRS) has a stretch of six

guanines, denoted by G6, from sites 66–71. Both of our subjects

had measurable heteroplasmy for the G5 variant, decreasing the

length of this poly-G tract by one nucleotide. This variant was

found in the same four tissues in both subjects: kidney (0.9% and

3.6% in subjects 1 and 2 respectively), large bowel (0.7% and

2.4%), small bowel (1.0% and 4.3%) and the white matter of the

brain (1.9% and 3.6%). This poly-G tract is located adjacent to

Figure 1. Coverage data. (A) The coverage of the mtDNA in each tissue in the two individuals sequenced in our study. (B) The mtDNA copy
number per cell for each tissue estimated from the coverage data.
doi:10.1371/journal.pgen.1003929.g001

Recurrent Tissue-Specific mtDNA Mutations
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one of the recurrent heteroplasmic SNPs (Figure 2). In kidney, the

G5 variant did not occur on the same reads as the heteroplasmic

variant at site 72, demonstrating that this is not a sequencing

artifact and that the variants are on different mtDNA molecules.

Considering its location, it is reasonable to hypothesize that this

poly-G length variant also affects mtDNA replication.

The second repeated heteroplasmic indel was in an 8-nucleotide

poly-A tract at positions 12418–12425. This is the longest poly-A

tract in the rCRS. In both subjects, we found the shorter A7

variant in the kidney samples only (1.0% heteroplasmy in subject 1

and 1.6% in subject 2). We also found the longer A9 variant in

both kidney samples, but at very low levels (,1%). This indel is the

only repeated mutation that we found in the coding region of the

mitochondrial genome. It is located near the start of the MT-ND5

gene (12337–14148) and causes a frameshift mutation, severely

altering almost the entire length of the ND5 protein, an essential

component of complex I of the electron transfer chain.

Molecular Validation and Replication
To confirm that the observed heteroplasmy was not due to

sequencing artifact, we performed an alternative analysis for site

G94A because it could be assayed using RFLP analysis.

Specifically, the G allele at G94A permits digestion with the

restriction enzyme BcoDI. Sensitivity of this assay was determined

using a titration of plasmid constructs with and without the

restriction site. This assay was specific to mtDNA because the

primers did not amplify nuclear DNA (Figure S1A). We detected

as low as 2.5% of the undigested variant (Figure S1B). RFLP

analysis of all samples from the two sequenced individuals

demonstrated that the tissues shown to be heteroplasmic from

the sequencing analyses had both digested and undigested bands

and were therefore heteroplasmic (Figure 4). As a negative control,

we also analyzed this site in spleen DNA and found it to be

consistent with the sequencing results (Figure 4). This result was

statistically significant (p,0.001).

To test the generality of this heteroplasmy we examined two

additional cancer-free individuals (Subjects 3 and 4 in Table 2)

using the same RFLP assay. This analysis replicated heteroplasmy

in liver in both additional subjects and in kidney in one individual.

No significant heteroplasmy was detected in spleen in either

subject, providing additional support for the tissue-specificity of

this SNP (Figure 4). The result was also statistically significant

(p,0.001).

Discussion

Previous Literature on the Recurrent Mutation Sites
Several of our observed heteroplasmic sites have been identified

in studies of human disease. The T408A mutation, which was

present in the muscle of all four sequenced individuals (two from

the present study and two from He et al.), has been reported as an

age-related somatic mutation in muscle [10,19,20,21]. It has also

been associated with disease in an investigation of a patient with a

mitochondrial depletion syndrome [22] that was fatal at a young

age (14 years), where the T408A mutation exhibited heteroplasmy

at high levels (.70%) in all investigated maternal relatives, but was

not detectible in the patient. The authors speculated that the

T408A mutation interacted with a hypothesized nuclear DNA

factor that affected mtDNA replication, thus leading to the

mtDNA depletion in this patient. The A189G mutation, which

was also present in the muscle of all four sequenced individuals,

has also been reported in studies of aging muscle

[10,19,20,21,23,24,25], and is often reported together with

T408A. Both of these mutations increase in heteroplasmy level

in muscle slowly with increasing age [19].

Heteroplasmy at site 16093 has often been reported in a range

of tissues [18,26,27,28,29,30,31,32], consistent with the observa-

tion of this variant being in all tissues in one of our two sequenced

subjects and one of the subjects from He et al. The T414G

mutation has been reported to accumulate with age in fibroblasts

and skeletal muscle [33,34] and we detected this mutation in one

individual in a skin sample (Table 1). Our observation of

heteroplasmy at 189, 408, 414, and 16093 and the previous

studies reporting these same variants provide support for the

validity of the next-generation sequencing data.

We found that four heteroplasmic somatic mutations (T60C,

T72C, G94A, and G203A) recur, but only in liver and/or

kidney. Given that liver and kidney arise from endoderm and

mesoderm respectively, it is unlikely these mutations share a

common developmental origin. These four sites are also global

population polymorphisms, though at low frequencies [8] (Table

S2). Some of these have been previously reported in the context

of human disease. The T72C variant has been reported as a

somatic mutation in the brain tissue of both Alzheimer’s cases

and controls [35], although it was not detected in any sequenced

brain samples in this study. G94A has recently been reported in

two Chinese pedigrees transmitting Lebers Hereditary Optic

Table 2. Demographics for our subjects.

Subject 1 Subject 2 Subject 3 Subject 4

Gender Male Female Male Female

Age (years) 57 71 43 73

Race White White White White

Height (cm) 173 NA 178 NA

Weight (kg) 97.2 62.6 113 246

BMI 32.5 NA 35.6 NA

Tobacco usage Yes Negative Negative Negative

Drug usage Negative Negative Negative Negative

Alcohol consumption Yes Negative Very little Negative

Cause of Death MI MI Accidental Death Sepsis (pneumonia)

MI: myocardial infarction.
NA: Not available.
doi:10.1371/journal.pgen.1003929.t002
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Neuropathy but in these families this variant was an inherited

fixed polymorphism, not a heteroplasmic somatic mutation [36].

Despite the rarity of G203A in the global population (estimated

as 0.3% in a survey of human mtDNA sequences deposited in

GenBank) [8] it has been identified as a fixed variant in patients

with deafness in two independent studies in different ethnicities

[37,38].

Implications of the Recurrent Mutations
Our results indicate that mtDNA heteroplasmy due to somatic

mutation is unexpectedly recurrent and tissue specific. By using a

sensitive deep-sequencing technique across a wide range of tissues

in multiple subjects we were able to test the hypothesis that specific

mtDNA variations preferentially accumulate in particular tissues

[34,39]. One possible explanation for observing the same mtDNA

heteroplasmic variants in two or more tissue types within the same

person is that a mutation occurred early in embryonic develop-

ment, before the tissues differentiated from their common

progenitor. However, this hypothesis cannot explain the repeated

observation of the same mutations in the same tissues in unrelated

individuals. The occurrence of repeated mutations in the same

tissues at sites that closely correspond to regulatory elements for

mtDNA replication indicates somatic selection as the most likely

mechanism driving the increase and maintenance of these

heteroplasmic mutations. This inference is further supported by

independent evidence that liver and kidney exhibit positive

selection for mtDNA variants in a mouse model formed by

artificially mixing the mtDNA of two different mouse strains

[40,41,42]. In-vivo BrdU labeling in these mice over a time course

of 50 hours did not detect any difference in labeling in liver

samples between the two mtDNA haplotypes [41], leading the

authors to conclude that replicative advantage was not the driving

force for the segregation in these mice. However, we would argue

that a 50 hour window is not comparable to the decades of

replication advantage that would need to occur in our subjects.

Recently, Sharpley et al [43] also generated a separate mouse

model of heteroplasmy by mixing the naturally occurring NZB

and 129S6 mtDNA sequences. This mouse model also showed

that the segregation of the two mtDNA genomes varied in a tissue-

specific manner, with liver and kidney having the strongest

Figure 2. Graphical representation of the human mtDNA control region (sites 576-1 and 16569-16024). All sites found to be
heteroplasmic in two or more subjects are listed, with measured percent heteroplasmy given after each tissue name. SM – skeletal muscle. H – heavy
strand of mtDNA, L – light strand, OH1 and OH2 – origins of replication of the heavy strand. Site numbering is from rCRS.
doi:10.1371/journal.pgen.1003929.g002
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selection for the NZB version of the genome. Finally, liver has

been argued to be under selection for nuclear aneuploidy and

polyploidy, indicating that selection may have a special role in this

tissue [44]. It is reasonable that the tissue specific selection of these

mtDNA variants is due to regulation by nuclear-encoded

mitochondrial genes with tissue-dependent expression, as has

been shown in one of the mouse models in spleen [40]. In contrast

to previous work documenting a wide variety of heteroplasmic sites

and their functional implications, the unique value of this study is

the comparison of mtDNA heteroplasmy across multiple tissues in

several individuals and the demonstration that several somatic

variants recur in a tissue-specific pattern.

The pattern of tissue-specific mutations we have found across

multiple individuals could be explained by a few alternatives,

including positive or negative selection. Under positive selection,

mutations in certain tissues would increase in frequency due to

their advantage. Under negative selection, mutations could occur

at a high rate but would be removed from all tissues except for

those where the recurrence is observed, where negative selection is

presumably relaxed. Of these two alternatives, positive selection is

the most likely explanation because under negative selection

mutations should be scattered widely across the mtDNA control

region, not just the recurrent ones at specific sites related to

replication (Figure 2). In contrast, positive selection could simply

be explained by a replication or other functional advantage in high

copy number tissues due to increased mtDNA replication. It is

important to note than any functional difference among the

variant mtDNA molecules, if any, are due only to the sites we

describe because all of our observed heteroplasmic sites are

independent of each other, and there were no recurrent

heteroplasmic sites in the coding regions.

Another alternative is that there are tissue-specific mutational

hotspots within the mtDNA. For example, interferon-induced

cytidine deaminases are capable of generating somatic mtDNA

mutation in a tissue-specific fashion [45]. Although this alternative

is not mutually exclusive to the selection argument, we still favor

differential selection based on its simplicity, and on prior data

suggesting that two of the tissues in which we observed recurrent

mtDNA mutations, liver and kidney, also undergo selection in two

separate heteroplasmic mouse models [40,41,42,43]. The mouse

models provide evidence suggesting that selection in the absence of

any de-novo mutation generation can cause tissue specific hetero-

plasmy patterns because in both mouse models the two mtDNA

haplotypes were artificially introduced through cell fusion and

were not generated via a mutation process. Furthermore, even if

the heteroplasmic sites we observed are mutational hotspots, their

locations in the mtDNA genome are highly suggestive of

functional roles (Figure 2). Homoplasmy in tumors has also been

shown to possibly derive from random processes alone, but this

computer simulation study is not directly analogous to recurrent

Figure 3. Tissue dependent heteroplasmy levels of the 16093 T/C variant across two subjects. The heteroplasmy levels in these two
subjects have a correlation of 0.93 (p = 0.003). The diagonal line shows equal values in the two subjects. Patient 11 is from He et al. [9].
doi:10.1371/journal.pgen.1003929.g003
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heteroplasmy in normal tissues of multiple individuals [46].

Therefore, the most parsimonious and reasonable explanation

for our data is positive selection in liver, kidney and skeletal muscle

for certain mutations in and around the regions controlling

mtDNA replication.

In a very different model system (i.e. a mouse strain with an

abnormally high mutation rates due to a defective mtDNA

polymerase) evidence for lower mutation load in the D loop was

described [47]. Specifically, in this mouse model the accumulation

of point mutations in the mtDNA was lower in the D loop region

than the rest of the mtDNA. It is impossible to determine

conclusively from these data whether this pattern is due to

selection or to a variation in mutation rate, but it does demonstrate

a non-random pattern in this part of the mtDNA, something we

also observed but in a different direction.

Our data provide strong support for the conclusion that the

current models of mtDNA variation are inadequate to explain

what we now call ‘‘recurrent heteroplasmy’’. The pattern of

common, recurrent mutations we observed provides strong

evidence that mtDNA heteroplasmy at several sites is non-random

and is most likely the result of tissue-specific positive selection

acting on the replication of mtDNA. The restriction of these

mutations to liver, kidney and skeletal muscle indicates that the

mtDNA replication process may vary across tissues, leading to

tissue-specific selective forces, which correspond with high copy

number tissues.

Materials and Methods

Tissue Collection
The protocols were approved by the Vanderbilt University

Institutional Review Board. Samples were collected at autopsy

within 48 hours post-mortem by a trained pathologist (RDH).

Tissue samples for DNA extraction were collected using clean and

sterile scalpels, placed in petri dishes, and transferred to 50 ml

tubes containing ice-cold Dulbecco’s phosphate-buffered saline

(DPBS), rinsed again with DPBS and stored at 280uC until DNA

extraction with exceptions as described below. Separate portions

of the tissue sections were preserved in 10% formalin. Skin

samples were collected from the ventral torso, from both above-

belt (Skin-AB) and below-belt (Skin-BB) (e.g. above or below the

waistline). Skeletal muscle was obtained from the diaphragm. The

small and large bowel samples consisted of mucosal tissue that was

collected by carefully scraping the loose mucosal layer from the

internal surface of bowel sections. Bone marrow tissue was

collected by flushing rib or vertebral body sections with DPBS and

collecting the flushed material in a 50 ml tube on ice, which was

then centrifuged to collect the cellular material. Splenocytes were

isolated as previously described [48]. Gray and white brain

samples were separated manually in a petri dish using a sterile

scalpel. Demographic information for the four subjects is in

Table 2.

DNA Extraction
For each tissue two DNA extractions were performed. The

tissue was lysed using the DNeasy Blood and Tissue Kit (Qiagen

69504). Once the tissue was lysed and incubated at 56uC
overnight, one set of DNA extractions was transferred into a

2.0 ml tube (Sarstedt 72.694.406) and put on the QIAsymphony

for automated extraction (Qiagen). The protocols used on the

QIAsymphony were Tissue_LC_200_V5 and Tis-

sue_HC_200_V5 depending on the tissue type. The second set

of DNA extractions was transferred to Autopure Qubes D

(Qiagen 949022) and 3 ml of Cell Lysis Solution (Qiagen 949006)

was added to each tissue sample. These samples were then placed

on the Autopure LS (Qiagen) for automated extraction. The

protocol used on the Autopure was Cell Lysate. The resulting

DNA was stored in Nunc Cryotubes (Nunc 377267). DNA from

each protocol was calibrated and samples combined prior to

sequencing.

Figure 4. Mutation at position 94 is verified by RFLP analysis. DNA isolated from kidney (K), liver (L), and spleen (S) from subjects 1, 2, 3 and 4
were subjected to PCR and RFLP analysis. The presence of the mutation at position 94 is seen as the presence of the upper (uncut) band by gel
electrophoresis. RFLP analysis of PCR products from wild type (94G), mutant (94A), and mixed (2.5% 94A) plasmid DNA are also loaded for
comparison.
doi:10.1371/journal.pgen.1003929.g004
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Sequencing and Data Processing
Sequences were generated as 100 nt paired-end reads on

Illumina HiSeq 2000 machines. The two subjects were

sequenced at different locations (subject 1 at Macrogen in

South Korea and subject 2 at Illumina in California). Each

sample was sequenced on 3–5 lanes, yielding 1.14–1.99 billion

reads, which were aligned to the human reference genome

hg19+rCRS (revised Cambridge Reference Sequence,

NC_012920.1) using BWA [5] (ver. 0.5.9-r16). We performed

local realignment and base quality score recalibration using

GATK [6] (ver. 1.0.5974). The number of mapped reads ranged

from 1.09–1.84 billion, with more than 90% of all reads being

mapped except skeletal muscle from subject 2 (86.2%) (Table

S1). Other programs were also used at various steps: samtools

(ver. 0.1.16) for sorting and indexing bam files, bamtools (ver.

0.8.1025) for splitting and merging bam files, and picard

(version 1.48) for marking duplicates and fixing mates after local

realignment.

All samples were also genotyped on the Illumina Human

Omni1 Quad chip with approximately one million SNPs in the

nuclear genome. The consistency rate between the sequence- and

chip-based SNP calls was .99.86% for all samples after standard

quality control filtering. This indicates that the sequencing data

were of high quality.

Identification of Heteroplasmy and Testing for Artifacts
Due to Non-Circularity of the Reference Genome

We screened for heteroplasmy in mtDNA using reads with

MAPQ$30. For each site, we calculated the fraction of bases A,

C, G, T on the forward and reverse strands. A site was called

heteroplasmic if it had $1% frequency for two or more bases on

both strands and the variant did not have any of the following

alignment artifacts: 1) strand bias, 2) clustering at read ends, and 3)

low average base quality score. Due to the high read depth

(Figure 1, Table S1) all duplicate reads were retained. Hetero-

plasmy estimates were assessed with and without the duplicate

reads and heteroplasmy levels were not influenced by the

duplicates.

The linear mtDNA reference genome (rCRS) was created by

cutting the circular mtDNA at a fixed position. This may generate

alignment artifacts near the linearization site (i.e., the ends of the

mtDNA reference): 1) a read overlapping the linearization site may

be unmapped or require heavy clipping to be aligned, 2) a read

may be aligned but its paired-end mate may not be, and 3) a read

may be aligned to one end of the reference but its mate to the

other end. As a result, reads close to the linearization site may have

low mapping quality scores and may be disproportionately filtered

out. As our data are 100 nt reads with insert sizes mostly between

250 bp and 400 bp (Figure S2), these artifacts may influence the

results hundreds of bases away from the mtDNA ‘‘ends’’. To

prevent artifacts due to mtDNA circularity we also created a new

mtDNA reference genome by shifting the rCRS starting point to

position 7002, and repeated the whole data processing steps as

described above. Heteroplasmy was virtually identical between the

two alignments, with less than 0.1% difference in heteroplasmy

estimates.

In addition, the artificial N base at 3107 of the rCRS reference

can lead to alignment artifacts. This N was removed before the

alignment was made.

Tests for Other Potential Sequencing Artifacts
For all observed heteroplasmic sites, we checked for various

sequencing artifacts. The mtDNA control region harbors multiple

poly-nucleotide tracts that could lead to sequencing artifacts. Since

these artifacts often have strand bias, we filtered out all sites with

strand bias. In addition, for each heteroplasmic site we performed

a motif analysis similar to that described in detail for site 310 in the

supplementary material, to identify artifacts (Table S4). We also

checked for the presence of artifacts due to sequence similarities

between the nuclear and mtDNA genomes (NUMT), and none

could be detected (see Text S1). The reported sites are free of any

artifacts.

Distributions of Cycle and Strand for the Mutant Alleles
Alignment errors are known to cause artifacts that often show

strand bias and excessive occurrence of mutant alleles at read ends.

We found no cycle (i.e. position on the read) or strand bias for the

mutant alleles at the heteroplasmic sites we identified. We

extracted all bases with mapping quality score $30 and base

quality score $20 at each heteroplasmic site and compared the

distributions of cycle and strand for the major and mutant alleles.

Figure S3 shows the distributions of C and A alleles for site 64 in

the skeletal muscle of Subject 1. The mutant allele was uniformly

distributed across the read length on both strands, showing no

strand or cycle bias. Other heteroplasmic sites we identified had

similar patterns.

Levels of Linkage Disequilibrium between Heteroplasmic
Sites

For heteroplasmic sites close enough to be on the same DNA read

or read pair, we assessed whether the minor alleles are on the same

haplotype background, or in other words, if they are in linkage

disequilibrium (LD). LD between the variants could be a sign of

either contamination or sequencing artifacts. Specifically, for every

pair of sites #100 bp apart (e.g., 60-72-94 in liver and kidney tissues

and 64–67 in skeletal muscles), we extracted reads that covered both

positions and had MAPQ$30. We further required that the reads

had all bases matched (i.e., CIGAR string ‘‘100M’’) or had clipping

at one end (i.e., CIGAR string matching the regular expression

pattern ‘‘[0–9]*S[0–9]*M’’ or ‘‘[0–9]*M[0–9]*S’’), and the bases at

the two sites had base quality score $20. We then tallied haplotypes

and calculated r2 between the two sites. All r2 values were very close

to zero (,0.004), indicating no LD between any heteroplasmic sites.

For every pair of sites .100 bp apart (e.g. between 60-72-94

and 203 in liver tissues; among 64–67, 189, and 408 in skeletal

muscles), we extracted read pairs that covered both positions and

had MAPQ$30 and then followed the above procedure. Again,

all r2 values were very close to zero (,0.007), indicating no LD in

the mtDNA.

Sequencing Error Rate
The sequencing error rate is reflected in the recalibrated base

quality scores. For example, a base quality (BQ) score of 25 means

the error rate for that base is 0.32%, BQ = 27 means 0.2%, and

BQ = 30 means 0.1%. These error rates are much lower than the

1% detection cutoff we used for the determination of hetero-

plasmic sites. Figure S4 shows the distribution of recalibrated base

quality scores. For all our samples, 82.4% bases had recalibrated

base quality score $30, 91.4% had scores $27, and 94.4% had

scores $25. These results provide assurance that the bases we used

for our inferences had high quality and an error rate much lower

than our heteroplasmy detection threshold.

Estimation of mtDNA Copy Number
We calculated the depth of coverage for autosomes and mtDNA

as:
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100|number of reads with MAPQ§20ð Þ
number of non�N bases in the referenceð Þ

The multiplier 100 was used because we had 100 nt reads. The

mtDNA depth ranged from 56516–1192036, and the autosome

depth ranged 376–616 (Table S1). Assuming each cell carries a

diploid (26) nuclear genome, the mtDNA copy number was

estimated as:

mtDNA depth

autosome depth=2ð Þ

The estimated mtDNA copy number ranged from 315 to 5880

(Table S1).

Statistical Tests
To test for non-randomness of the recurrent mutations, we

calculated the probability that a mutation occurred at these 10

sites under two extreme scenarios. Using a model of constant

mutation rate, c, along the whole mtDNA genome, the probability

for a mutation to occur anywhere would be 16569c and the

probability for it to occur at these 10 sites would be 10c. Thus the

probability for an observed mutation in a DNA sample to occur

only at any of these 10 sites is 10/16569 = 6.0e24. Now suppose a

mutation has been observed in a specific tissue of an individual.

The probability to observe the same mutation in another

individual only in the same tissue (out of 10 tissues) and on the

same site (out of 10 sites) is further reduced to 6.0e26. The

recurrence patterns of the reported mutations fall between these

two extreme scenarios, and therefore their p-values are between

6.0e24 and 6.0e26.

To test for correlation of 16093 heteroplasmy levels between the

two individuals (Figure 3), we calculated the Pearson correlation

coefficient and its associated p-value. The correlation was 0.93 and

the p-value was 0.0028.

We calculated the p-value to evaluate the significance of our

RFLP validation and replication results. For the validation part,

we performed RFLP on six tissues (kidney, liver, spleen from

Subjects 1–2). Let a = P(detect 94A|94A is absent), the probability

of falsely detecting 94A in RFLP analysis while it was absent. Then

the probability of seeing 94A in two kidneys, two livers but not the

two spleens is a4(12a)2. The value of a is probably lower than the

false positive rate for sequencing analysis, which would be at most

0.2 (4 out of 20 tissues when the sequencing results were assumed

to be false). Even at a = 0.2, the p-value will be a4(12a)2 = 0.001.

The p-value will be much smaller at a lower value of a; for

example, p = 5.6e26 if a = 0.05, and p = 9.8e29 if a = 0.01. The p-

value for the replication part can be similarly evaluated.

Haplogroup Determination
We determined the mtDNA haplogroups for our subjects: T2a1

for subject 1 and H1a1 for subject 2 (Table S3). Haplogrouping

was performed using the H-Mito program (http://www.phylotree.

org) supplied by Mannis van Oven [49].

RFLP Analysis
To provide molecular validation of sequencing results, we

performed RFLP analysis using control plasmids and patient DNA

from suspected heteroplasmic and homoplasmic tissues. We

focused on position 94, which sequencing results identified as

heteroplasmic in kidney and liver. Control samples consisted of

100% wild-type plasmids at position 94 (G), 100% mutant

plasmids (A), or 97.5% wild-type and 2.5% mutant plasmids.

DNA samples from suspected heteroplasmic kidney and liver

tissues, and from suspected homoplasmic spleen tissue were

analyzed for subjects 1–4. Fifteen nanograms of the control

plasmid or patient DNA was amplified with 10 mM D-loop-

targeted forward (59-GATCACAGGTCTATCACCCTATTA-

AC-39) and reverse (59-CAGATACTGCGACATAGGGTGCT-

39) primers (Operon) and Platinum PCR Supermix (Invitrogen)

according to manufacturer’s directions. Following amplification,

PCR products were digested for 8 h at 37uC with the restriction

enzyme BcoDI, which cuts the wild-type but not mutant PCR

product at position 94. Successful digestion resulted in cutting of

the 130-bp PCR product into 90- and 40-bp fragments. We added

5 mL 56gel-loading dye (KD Medical/MediaTech) to each 20-uL

reaction after restriction digest, and loaded 12 mL of digest

products and gel-loading dye into each well of a 3% agarose

(Sigma) gel in 16TBE (Cellgro) with 0.0125% ethidium bromide

(Bio-Rad). The gel was run at 150 V for 2 h, then UV imaged for

200 ms in a Syngene G:Box imager.

Supporting Information

Figure S1 RFLP analysis can detect low levels of mutation at

position 94. (A) PCR using primers surrounding position 94 of the D

loop of the mtDNA amplify a 130 bp fragment from HeLa cell or

human brain total DNA. No amplification is seen when rho zero

(lacking mtDNA) cell DNA is used as template, indicating no

amplification from nuclear mtDNA insertions (nuMTs). (B)

Sensitivity of RFLP analysis. Mixtures of plasmids containing a

wild type (94G) or mutant (94A) allele were used to determine the

sensitivity of the RFLP analysis. Plasmid mixtures were subjected to

PCR and the amplified DNA fragments were digested with BcoDI.

(DOCX)

Figure S2 Distribution of mtDNA insert size for subject 1 (left) and

subject (right). To address these issues, we created a new mtDNA

reference genome, starting at position 7002 and without the N base at

3107. We then aligned all reads, using hg19 and this new mtDNA

reference to compare with the alignment to the original rCRS. The

list of heteroplasmic sites was the same for both alignments.

Heteroplasmy levels were estimated using the alignment for which

the linearization site was more distant from the evaluated site. All

heteroplasmic sites had only two alleles with $1% frequency and one

of the two alleles was always the reference allele in the rCRS.

(DOCX)

Figure S3 Distributions of cycle for bases C and A at site 64 in

the skeletal muscle of Subject 1.

(DOCX)

Figure S4 Distribution of base quality score after recalibration

for subject 1 (left) and subject 2 (right).

(DOCX)

Table S1 Summary of sequencing

(DOCX)

Table S2 Sequence properties of the recurrent heteroplasmic

sites

(DOCX)

Table S3 Haplogroup information for our subjects: Alleles at

non-heteroplasmic sites that differ from the rCRS reference are

shown. The alleles are fixed in all tissues except for 16126, which

was heteroplasmic in two tissues of Subject 1 (Table 1). Site 16093

is also included because its major allele is not the reference allele in

all but one tissue of Subject 1.

(DOCX)
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Table S4 Variations in the region around site 310 in the skeletal

muscle sample from Subject 1. Motifs with less than 10 copies are

not shown. Bases that differ from the major motif are in red.

(DOCX)

Text S1 Supplemental data and description of methods.

(DOC)

Author Contributions

Conceived and designed the experiments: DCS CL BL JLH DGM DPM

SMW. Performed the experiments: DCS CL BL ET HBC TMH DGM

DPM. Analyzed the data: DCS CL BL ZS ET AR TATW JHM SMW.

Contributed reagents/materials/analysis tools: TMH RDH DPM SMW.

Wrote the paper: DCS CL BL AR TATW JHM JLH DGM DPM SMW.

References

1. Cree LM, Samuels DC, Chinnery PF (2009) The inheritance of pathogenic

mitochondrial DNA mutations. Biochimica Et Biophysica Acta-Molecular Basis

of Disease 1792: 1097–1102.

2. Elson JL, Samuels DC, Turnbull DM, Chinnery PF (2001) Random intracellular

drift explains the clonal expansion of mitochondrial DNA mutations with age.
American Journal of Human Genetics 68: 802–806.

3. Larsson NG (2010) Somatic Mitochondrial DNA Mutations in Mammalian

Aging. Annual Review of Biochemistry 79: 683–706.

4. Andrews RM, Kubacka I, Chinnery PF, Lightowlers RN, Turnbull DM, et al.

(1999) Reanalysis and revision of the Cambridge reference sequence for human
mitochondrial DNA. Nature Genetics 23: 147–147.

5. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754–1760.

6. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The

Genome Analysis Toolkit: A MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Research 20: 1297–1303.

7. Miller FJ, Rosenfeldt FL, Zhang CF, Linnane AW, Nagley P (2003) Precise
determination of mitochondrial DNA copy number in human skeletal and

cardiac muscle by a PCR-based assay: lack of change of copy number with age.
Nucleic Acids Research 31 (11):e61.

8. Pereira L, Freitas F, Fernandes V, Pereira JB, Costa MD, et al. (2009) The

Diversity Present in 5140 Human Mitochondrial Genomes. American Journal of
Human Genetics 84: 628–640.

9. He YP, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, et al.
(2010) Heteroplasmic mitochondrial DNA mutations in normal and tumour

cells. Nature 464: 610–614.

10. Wang Y, Michikawa Y, Mallidis C, Bai Y, Woodhouse L, et al. (2001) Muscle-
specific mutations accumulate with aging in critical human mtDNA control sites

for replication. Proceedings of the National Academy of Sciences of the United
States of America 98: 4022–4027.

11. Dimauro S, Davidzon G (2005) Mitochondrial DNA and disease. Annals of
Medicine 37: 222–232.

12. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, et al. (1992)

Mitochondrial-DNA Deletions in Human Brain - Regional Variability and
Increase with Advanced Age. Nature Genetics 2: 324–329.

13. Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992) A Pattern of
Accumulation of a Somatic Deletion of Mitochondrial-DNA in Aging Human

Tissues. Proceedings of the National Academy of Sciences of the United States of
America 89: 7370–7374.

14. Krishnan KJ, Reeve AK, Samuels DC, Chinnery PF, Blackwood JK, et al.

(2008) What causes mitochondrial DNA deletions in human cells? Nature
Genetics 40: 275–279.

15. Fish J, Raule N, Attardi G (2004) Discovery of a major D-loop replication origin
reveals two modes of human mtDNA synthesis. Science 306: 2098–2101.

16. Yasukawa T, Yang MY, Jacobs HT, Holt IJ (2005) A bidirectional origin of

replication maps to the major noncoding region of human mitochondrial DNA.
Molecular Cell 18: 651–662.

17. Pereira F, Soares P, Carneiro J, Pereira L, Richards MB, et al. (2008) Evidence
for Variable Selective Pressures at a Large Secondary Structure of the Human

Mitochondrial DNA Control Region. Molecular Biology and Evolution 25:
2759–2770.

18. Andrew T, Calloway CD, Stuart S, Lee SH, Gill R, et al. (2011) A Twin Study

of Mitochondrial DNA Polymorphisms Shows that Heteroplasmy at Multiple
Sites Is Associated with mtDNA Variant 16093 but Not with Zygosity. Plos One

6(8): e22332. doi:10.1371/journal.pone.0022332.

19. Del Bo R, Bordoni A, Boneschi FM, Crimi M, Sciacco M, et al. (2002) Evidence

and age-related distribution of mtDNA D-loop point mutations in skeletal
muscle from healthy subjects and mitochondrial patients. Journal of the

Neurological Sciences 202: 85–91.

20. Del Bo R, Crimi M, Sciacco M, Malferrari G, Bordoni A, et al. (2003) High
mutational burden in the mtDNA control region from aged muscles: a single-

fiber study. Neurobiology of Aging 24: 829–838.

21. Avital G, Buchshtav M, Zhidkov I, Tuval J, Dadon S, et al. (2012)

Mitochondrial DNA heteroplasmy in diabetes and normal adults: role of

acquired and inherited mutational patterns in twins. Human Molecular Genetics
21: 4214–4224.

22. Barthelemy C, de Baulny HO, Lombes A (2002) D-loop mutations in
mitochondrial DNA: link with mitochondrial DNA depletion? Human Genetics

110: 479–487.

23. Cormio A, Milella F, Vecchiet J, Felzani G, Gadaleta MN, et al. (2005)

Mitochondrial DNA mutations in RRF of healthy subjects of different age.

Neurobiology of Aging 26: 655–664.

24. da Costa CK, Kiyomoto BH, Schmidt B, Oliveira ASB, Gabbai AA, et al. (2007)

Age-related mitochondrial DNA point mutations in patients with mitochondrial

myopathy. Journal of the Neurological Sciences 263: 139–144.

25. Payne BAI, Wilson IJ, Yu-Wai-Man P, Coxhead J, Deehan D, et al. (2013)

Universal heteroplasmy of human mitochondrial DNA. Human Molecular

Genetics 22: 384–390.

26. Allard MW, Polanskey D, Miller K, Wilson MR, Monson KL, et al. (2005)

Characterization of human control region sequences of the African American

SWGDAM forensic mtDNA data set. Forensic Science International 148: 169–

179.

27. Allard MW, Polanskey D, Wilson MR, Monson KL, Budowle B (2006)

Evaluation of variation in control region sequences for Hispanic individuals

in the SWGDAM mtDNA data set. Journal of Forensic Sciences 51: 566–

573.

28. Malyarchuk BA, Derenko MV (2001) Variation of human mitochondrial DNA:

Distribution of hot spots in hypervariable segment I of the major noncoding

region. Russian Journal of Genetics 37: 823–832.

29. Pai CY, Hsieh LL, Lee TC, Yang SB, Linville J, et al. (2006) Mitochondrial

DNA sequence alterations observed between blood and buccal cells within the

same individuals having betel quid (BQ)-chewing habit. Forensic Science

International 156: 124–130.

30. Picornell A, Gimenez P, Castro JA, Ramon MM (2006) Mitochondrial DNA

sequence variation in Jewish populations. International Journal of Legal

Medicine 120: 271–281.

31. Tully G, Barritt SM, Bender K, Brignon E, Capelli C, et al. (2004) Results of a

collaborative study of the EDNAP group regarding mitochondrial DNA

heteroplasmy and segregation in hair shafts. Forensic Science International

140: 1–11.

32. Tully LA, Parsons TJ, Steighner RJ, Holland MM, Marino MA, et al. (2000) A

sensitive denaturing gradient-gel electrophoresis assay reveals a high frequency

of heteroplasmy in hypervariable region 1 of the human mtDNA control region.

American Journal of Human Genetics 67: 432–443.

33. Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999) Aging-

dependent large accumulation of point mutations in the human mtDNA control

region for replication. Science 286: 774–779.

34. Murdock DG, Christacos NC, Wallace DC (2000) The age-related accumula-

tion of a mitochondrial DNA control region mutation in muscle, but not brain,

detected by a sensitive PNA-directed PCR clamping based method. Nucleic

Acids Research 28: 4350–4355.

35. Coskun PE, Beal MF, Wallace DC (2004) Alzheimer’s brains harbor somatic

mtDNA control-region mutations that suppress mitochondrial transcription and

replication. Proceedings of the National Academy of Sciences of the United

States of America 101: 10726–10731.

36. Shu L, Zhang YM, Huang XX, Chen CY, Zhang XN (2012) Complete

mitochondrial DNA sequence analysis in two southern Chinese pedigrees

with Leber hereditary optic neuropathy revealed secondary mutations along

with the primary mutation. International Journal of Ophthalmology 5: 28–

31.

37. Janssen GMC, Neu A, t’Hart LM, van de Sande CMT, Maassen JA (2006)

Novel mitochondrial DNA length variants and genetic instability in a family with

diabetes and deafness. Experimental and Clinical Endocrinology & Diabetes

114: 168–174.

38. Yamasoba T, Goto Y, Oka Y, Nishino I, Tsukuda K, et al. (2002) Atypical

muscle pathology and a survey of cis-mutations in deaf patients harboring a 1555

A-to-G point mutation in the mitochondrial ribosomal RNA gene. Neuromus-

cular Disorders 12: 506–512.

39. Coskun PE, Ruiz-Pesini E, Wallace DC (2003) Control region mtDNA variants:

Longevity, climatic adaptation, and a forensic conundrum. Proceedings of the

National Academy of Sciences of the United States of America 100: 2174–2176.

40. Battersby BJ, Loredo-Osti JC, Shoubridge EA (2003) Nuclear genetic control of

mitochondrial DNA segregation. Nature Genetics 33: 183–186.

41. Battersby BJ, Shoubridge EA (2001) Selection of a mtDNA sequence variant

in hepatocytes of heteroplasmic mice is not due to differences in respiratory

chain function or efficiency of replication. Human Molecular Genetics 10:

2469–2479.

42. Jenuth JP, Peterson AC, Shoubridge EA (1997) Tissue-specific selection for

different mtDNA genotypes in heteroplasmic mice. Nature Genetics 16: 93–

95.

43. Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, et al.

(2012) Heteroplasmy of Mouse mtDNA Is Genetically Unstable and Results in

Altered Behavior and Cognition. Cell 151: 333–343.

Recurrent Tissue-Specific mtDNA Mutations

PLOS Genetics | www.plosgenetics.org 11 November 2013 | Volume 9 | Issue 11 | e1003929



44. Duncan AW, Taylor MH, Hickey RD, Newell AEH, Lenzi ML, et al. (2010)

The ploidy conveyor of mature hepatocytes as a source of genetic variation.

Nature 467: 707–710.

45. Suspene R, Aynaud MM, Guetard D, Henry M, Eckhoff G, et al. (2011)

Somatic hypermutation of human mitochondrial and nuclear DNA by

APOBEC3 cytidine deaminases, a pathway for DNA catabolism. Proceedings

of the National Academy of Sciences of the United States of America 108: 4858–

4863.

46. Coller HA, Khrapko K, Bodyak ND, Nekhaeva E, Herrero-Jimenez P, et al.

(2001) High frequency of homoplasmic mitochondrial DNA mutations in human
tumors can be explained without selection. Nature Genetics 28: 147–150.

47. Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, et al. (2008) Strong purifying

selection in transmission of mammalian mitochondrial DNA. Plos Biology 6: 63–71.
48. Chandy KC, Beeton C (2007) Preparing T cell growth factor from rat

splenocytes. Journal of Visualized Experiments 10: e402.
49. van Oven M, Kayser M (2009) Updated Comprehensive Phylogenetic Tree of

Global Human Mitochondrial DNA Variation. Human Mutation 30: E386–

E394.

Recurrent Tissue-Specific mtDNA Mutations

PLOS Genetics | www.plosgenetics.org 12 November 2013 | Volume 9 | Issue 11 | e1003929


	Dartmouth College
	Dartmouth Digital Commons
	11-7-2013

	Recurrent Tissue-Specific Mtdna Mutations are Common in Humans
	David C. Samuels
	Chun Li
	Bingshan Li
	Zhuo Song
	Eric Torstenson
	See next page for additional authors
	Recommended Citation
	Authors


	pgen.1003929 1..12

