7 research outputs found
Ratio-PCR to determine relative levels of expression of inositol 1,4,5-Trisphosphate receptors in rat tissues
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department ([email protected])
Ratio-PCR to determine relative levels of expression of inositol 1,4,5-Trisphosphate receptors in rat tissues
This document only includes an excerpt of the corresponding thesis or dissertation. To request a digital scan of the full text, please contact the Ruth Lilly Medical Library's Interlibrary Loan Department ([email protected])
Cyclooxygenase‐1 and ‐2 inhibition alter hypothalamic‐pituitary‐adrenal axis (HPA) activity and COX expression in fetal brain.
G-CSF and Erythropoietin Stability in Amniotic Fluid during Simulated in vitro Digestion Conditions
Objective: To determine the stability of granulocyte colony-stimulating factor (G-CSF) and erythropoietin (Epo) in human amniotic fluid and recombinant G-CSF (Neupogen) and Epo (Epogen) in simulated amniotic fluid to digestions at pH concentrations of 3.2, 4.5, and 5.8 to assess their bioavailability to the neonate. Design: A simulated amniotic fluid containing Neupogen and Epogen was subjected to in vitro conditions that mimicked preprandial and postprandial neonatal intestinal digestion. Human amniotic fluid was tested using identical digestion conditions as well as human amniotic fluid to which Epogen and Neupogen had been added. Main Outcome Measures: The percentages of G-CSF/Epo and Neupogen/Epogen remaining after 1 and 2 hours of simulated digestions were compared with those at time zero, and concentrations at 2 hours were compared with those at 1 hour and time zero. Results: In simulated amniotic fluid at pH 3.2, significant degradation of G-CSF was observed at 1 hour (p = 0.03). No differences were observed at 1 or 2 hours for either pH 4.5 (p = 0.30 and 0.11, respectively) or pH 5.8 (p = 0.20 and 0.49, respectively). Human amniotic fluid exhibited significant degradation pH 3.2 (p = 0.04) and pH 4.5 (p < 0.05) at 1 hour; no difference was noted at pH 5.8 at 1 hour (p = 0.34). When additional Neupogen was added to human amniotic fluid, significant degradation was observed at pH 3.2 (p < 0.05) and pH 4.5 (p = 0.03) at 1 hour; no difference was noted at 1 hour at pH 5.8 (p = 0.11). In simulated amniotic fluid at pH 3.2, significant degradation of Epo occurred at 1 hour (p < 0.05). There were no differences at 1 hour for pH 4.5 (p = 0.50) or pH 5.8 (p = 0.17). Human amniotic fluid exhibited significant degradation at pH 3.2 (p < 0.05) and pH 4.5 (p < 0.05) at 1 hour; no difference was noted at 1 hour at pH 5.8 (p = 0.34). When additional Epogen was added to human amniotic fluid, significant degradation was observed at pH 3.2 (p = 0.001) and pH 4.5 (p = 0.003); no difference was noted at 1 hour at pH 5.8 (p = 0.31). Conclusions: G-CSF/Epo in human amniotic fluid and Neupogen/Epogen in simulated amniotic fluid are preserved to varying degrees during simulated digestion conditions. The degree of degradation of both cytokines was time- and pH-dependent. Measurable quantities of G-CSF and Epo are biologically available when swallowed by the fetus or a preterm neonate. </jats:sec
Genomic analysis of neuroendocrine development of fetal brain-pituitary-adrenal axis in late gestation
Inhibition of Brain Prostaglandin Endoperoxide Synthase-2 Prevents the Preparturient Increase in Fetal Adrenocorticotropin Secretion in the Sheep Fetus
Maturation of the fetal hypothalamus-pituitary-adrenal axis is critical for the timely somatic development of the fetus and readiness for birth. Recently, we proposed that prostaglandin generation within the fetal central nervous system is critical for the modulation of hypotension-induced fetal ACTH secretion. The present study was designed to test the hypothesis that the preparturient increase in fetal ACTH secretion is dependent upon fetal central nervous system prostaglandin synthesis mediated by the activity of prostaglandin endoperoxide synthase (PGHS)-2 (cyclooxygenase-2) in the fetal brain. We performed two studies in chronically catheterized fetal sheep. In the first study, we infused nimesulide or vehicle intracerebroventricularly (icv) into singleton fetal sheep and collected blood samples until spontaneous parturition. Nimesulide significantly delayed parturition, and inhibited fetal ACTH and proopiomelanocortin secretion but did not prevent the preparturient increase in fetal plasma cortisol concentration. In the second study, we used twin fetuses. One fetus received intracerebroventricular nimesulide and the other intracerebroventricular vehicle. Nimesulide reduced brain tissue concentrations of prostaglandin estradiol, while not affecting plasma prostaglandin E2 concentrations, demonstrating an action restricted to the fetal brain. Nimesulide reduced PGHS-2 mRNA and increased PGHS-2 protein, while not altering PGHS-1 mRNA or protein in most brain regions, suggesting an effect of the inhibitor on PGHS-2 turnover and relative specificity for PGHS-2 in vivo. We conclude that the preparturient increase in fetal ACTH and proopiomelanocortin is dependent upon the activity of PGHS-2 in the fetal brain. However, we also conclude that the timing of parturition is not solely dependent upon ACTH in this species
