205 research outputs found

    Social learning in a multi-agent system

    No full text
    In a persistent multi-agent system, it should be possible for new agents to benefit from the accumulated learning of more experienced agents. Parallel reasoning can be applied to the case of newborn animals, and thus the biological literature on social learning may aid in the construction of effective multi-agent systems. Biologists have looked at both the functions of social learning and the mechanisms that enable it. Many researchers have focused on the cognitively complex mechanism of imitation; we will also consider a range of simpler mechanisms that could more easily be implemented in robotic or software agents. Research in artificial life shows that complex global phenomena can arise from simple local rules. Similarly, complex information sharing at the system level may result from quite simple individual learning rules. We demonstrate in simulation that simple mechanisms can outperform imitation in a multi-agent system, and that the effectiveness of any social learning strategy will depend on the agents' environment. Our simple mechanisms have obvious advantages in terms of robustness and design costs

    Social Learning in a Multi-Agent System

    Get PDF
    In a persistent multi-agent system, it should be possible for new agents to benefit from the accumulated learning of more experienced agents. Parallel reasoning can be applied to the case of newborn animals, and thus the biological literature on social learning may aid in the construction of effective multi-agent systems. Biologists have looked at both the functions of social learning and the mechanisms that enable it. Many researchers have focused on the cognitively complex mechanism of imitation; we will also consider a range of simpler mechanisms that could more easily be implemented in robotic or software agents. Research in artificial life shows that complex global phenomena can arise from simple local rules. Similarly, complex information sharing at the system level may result from quite simple individual learning rules. We demonstrate in simulation that simple mechanisms can outperform imitation in a multi-agent system, and that the effectiveness of any social learning strategy will depend on the agents' environment. Our simple mechanisms have obvious advantages in terms of robustness and design costs

    Extremism propagation in social networks with hubs

    No full text
    One aspect of opinion change that has been of academic interest is the impact of people with extreme opinions (extremists) on opinion dynamics. An agent-based model has been used to study the role of small-world social network topologies on general opinion change in the presence of extremists. It has been found that opinion convergence to a single extreme occurs only when the average number of network connections for each individual is extremely high. Here, we extend the model to examine the effect of positively skewed degree distributions, in addition to small-world structures, on the types of opinion convergence that occur in the presence of extremists. We also examine what happens when extremist opinions are located on the well-connected nodes (hubs) created by the positively skewed distribution. We find that a positively skewed network topology encourages opinion convergence on a single extreme under a wider range of conditions than topologies whose degree distributions were not skewed. The importance of social position for social influence is highlighted by the result that, when positive extremists are placed on hubs, all population convergence is to the positive extreme even when there are twice as many negative extremists. Thus, our results have shown the importance of considering a positively skewed degree distribution, and in particular network hubs and social position, when examining extremist transmission

    First Data On Aquaculture of the Tripletail, \u3ci\u3eLobotes surinamensis\u3c/i\u3e, a Promising Candidate Species For U.S. Marine Aquaculture

    Get PDF
    The Tripletail, Lobotes surinamensis, is a warm-water pelagic fish that is increasingly targeted by U.S. anglers. The superior quality of Tripletail flesh coupled with the lack of domestic commercial fisheries stimulated interests to develop aquaculture of this species. In this work, photo-thermal conditioning of captive-held broodstocks promoted maturation in females, but spontaneous spawning was not observed. GnRHa slow-release implants induced ovulation in late vitellogenic females but fertility remained below 10% when GnRHa was administered alone. However, spawns with high fertility (up to 85%) were obtained when a dopamine antagonist was administered in conjunction with GnRHa implants indicating dopamine inhibition impaired final gamete maturation, in particular sperm production in males, in aquaculture conditions. Tripletail larvae successfully initiated exogenous feeding on enriched rotifers followed by Artemia nauplii and were weaned to prepared feeds at 25 days post hatch, yet with low survival through the late phases of larval culture. Pilot grow-out trials at low density in recirculating systems revealed impressive growth rates averaging over 170 g/month through a market size above 1 kg. While protocols for hatchery culture and grow-out still need to be optimized, current data suggest that Tripletail could become a successful species for U.S. marine aquaculture

    Antarctic Cryptoendolithic Fungal Communities Are Highly Adapted and Dominated by Lecanoromycetes and Dothideomycetes

    Get PDF
    Endolithic growth is one of the most spectacular microbial adaptations to extreme environmental constraints and the predominant life-form in the ice-free areas of Continental Antarctica. Although Antarctic endolithic microbial communities are known to host among the most resistant and extreme-adapted organisms, our knowledge on microbial diversity and composition in this peculiar niche is still limited. In this study, we investigated the diversity and structure of the fungal assemblage in the cryptoendolithic communities inhabiting sandstone using a meta-barcoding approach targeting the fungal Internal Transcribed Sequence region 1 (ITS1). Samples were collected from 14 sites in the Victoria Land, along an altitudinal gradient ranging from 1,000 to 3,300 m a.s.l. and from 29 to 96 km distance to coast. Our study revealed a clear dominance of a ‘core’ group of fungal taxa consistently present across all the samples, mainly composed of lichen-forming and Dothideomycetous fungi. Pareto-Lorenz curves indicated a very high degree of specialization (F0 approximately 95%), suggesting these communities are highly adapted but have limited ability to recover after perturbations. Overall, both fungal community biodiversity and composition did not show any correlation with the considered abiotic parameters, potentially due to strong fluctuations of environmental conditions at local scales

    Media Education Connection

    Get PDF
    Media Education Connection for the Fall of 2021 was about collaborating and educating Union City Jr-Sr. high school students in the world of media. We worked with them to create a small series of documentaries for the town of Union City, which will be used to help promote their new multipurpose space, Vision Corner. Our TCOM 487 class, taught by Ben Strack, researched, reached out, and recorded small documentaries about small businesses and organizations in Union City, all while teaching and mentoring younger students of Union City's KISS TV. We focused greatly on the history of the town and the impact its spaces have had on its community. Splitting up into groups, our class took a group of Union City students and taught them about the film equipment and showed them the process of shooting an interview. One day, a small group of them visited Ball State and got to see how we do things on our home-base. Not only was this immersive about teaching and inspiring students and helping them learn, but it was also about strengthening our professionalism skills with clients, learning from one another, and creating a final product meant to bring together a community of people

    Impaired circulating myeloid CD1c+ dendritic cell function in human glioblastoma is restored by p38 inhibition - implications for the next generation of DC vaccines

    Get PDF
    Current treatments for glioblastoma (GBM) have limited efficacy and significant morbidity and therefore new strategies are urgently needed. Dendritic cells have the power to create anti-tumour immune responses. The greater potency of circulating dendritic cells (DC) over laboratory-generated monocyte-derived DC makes them exciting new immunotherapeutic candidates. To determine the immune status of GBM patients we initially investigated the frequency and function of circulating DC subsets. Furthermore, we tested the therapeutic potential of inhibiting the p38 mitogen-activated protein kinase pathway (p38i) in circulating DC to overcome DC dysfunction.GBM patients (n=16) had significantly reduced numbers of the major myeloid circulating dendritic cell (cDC2) and plasmacytoid DC vs healthy controls; 1736 vs 4975 (p=0.028) and 893 vs 2287 cells/mL (P
    • …
    corecore