975 research outputs found

    Use of electronic medical records (EMR) for oncology outcomes research: assessing the comparability of EMR information to patient registry and health claims data

    Get PDF
    Electronic medical records (EMRs) are used increasingly for research in clinical oncology, epidemiology, and comparative effectiveness research (CER)

    Boundaries of Disk-like Self-affine Tiles

    Full text link
    Let T:=T(A,D)T:= T(A, {\mathcal D}) be a disk-like self-affine tile generated by an integral expanding matrix AA and a consecutive collinear digit set D{\mathcal D}, and let f(x)=x2+px+qf(x)=x^{2}+px+q be the characteristic polynomial of AA. In the paper, we identify the boundary T\partial T with a sofic system by constructing a neighbor graph and derive equivalent conditions for the pair (A,D)(A,{\mathcal D}) to be a number system. Moreover, by using the graph-directed construction and a device of pseudo-norm ω\omega, we find the generalized Hausdorff dimension dimHω(T)=2logρ(M)/logq\dim_H^{\omega} (\partial T)=2\log \rho(M)/\log |q| where ρ(M)\rho(M) is the spectral radius of certain contact matrix MM. Especially, when AA is a similarity, we obtain the standard Hausdorff dimension dimH(T)=2logρ/logq\dim_H (\partial T)=2\log \rho/\log |q| where ρ\rho is the largest positive zero of the cubic polynomial x3(p1)x2(qp)xqx^{3}-(|p|-1)x^{2}-(|q|-|p|)x-|q|, which is simpler than the known result.Comment: 26 pages, 11 figure

    Spin-locking in low-frequency reaction yield detected magnetic resonance

    Get PDF
    The purported effects of weak magnetic fields on various biological systems from animal magnetoreception to human health have generated widespread interest and sparked much controversy in the past decade. To date the only well established mechanism by which the rates and yields of chemical reactions are known to be influenced by magnetic fields is the radical pair mechanism, based on the spin-dependent reactivity of radical pairs. A diagnostic test for the operation of the radical pair mechanism was proposed by Henbest et al. [J. Am. Chem. Soc., 2004, 126, 8102] based on the combined effects of weak static magnetic fields and radiofrequency oscillating fields in a reaction yield detected magnetic resonance experiment. Here we investigate the effects on radical pair reactions of applying relatively strong oscillating fields, both parallel and perpendicular to the static field. We demonstrate the importance of understanding the effect of the strength of the radiofrequency oscillating field; our experiments demonstrate that there is an optimal oscillating field strength above which the observed signal decreases in intensity and eventually inverts. We establish the correlation between the onset of this effect and the hyperfine structure of the radicals involved, and identify the existence of ‘overtone’ type features appearing at multiples of the expected resonance field positio

    Small RNAs with 5′-Polyphosphate Termini Associate with a Piwi-Related Protein and Regulate Gene Expression in the Single-Celled Eukaryote Entamoeba histolytica

    Get PDF
    Small interfering RNAs regulate gene expression in diverse biological processes, including heterochromatin formation and DNA elimination, developmental regulation, and cell differentiation. In the single-celled eukaryote Entamoeba histolytica, we have identified a population of small RNAs of 27 nt size that (i) have 5′-polyphosphate termini, (ii) map antisense to genes, and (iii) associate with an E. histolytica Piwi-related protein. Whole genome microarray expression analysis revealed that essentially all genes to which antisense small RNAs map were not expressed under trophozoite conditions, the parasite stage from which the small RNAs were cloned. However, a number of these genes were expressed in other E. histolytica strains with an inverse correlation between small RNA and gene expression level, suggesting that these small RNAs mediate silencing of the cognate gene. Overall, our results demonstrate that E. histolytica has an abundant 27 nt small RNA population, with features similar to secondary siRNAs from C. elegans, and which appear to regulate gene expression. These data indicate that a silencing pathway mediated by 5′-polyphosphate siRNAs extends to single-celled eukaryotic organisms

    A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons

    Get PDF
    Although mosquitoes are major transmission vectors for pathogenic arboviruses, viral infection has little impact on mosquito health. This immunity is due in part to mosquito RNA interference (RNAi) pathways that generate antiviral small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). RNAi also maintains genome integrity by potently repressing mosquito transposon activity in the germline and soma. However, viral and transposon small RNA regulatory pathways have not been systematically examined together in mosquitoes. Therefore, we developed an integrated Mosquito Small RNA Genomics (MSRG) resource that analyzes the transposon and virus small RNA profiles in mosquito cell cultures and somatic and gonadal tissues across four medically important mosquito species. Our resource captures both somatic and gonadal small RNA expression profiles within mosquito cell cultures, and we report the evolutionary dynamics of a novel Mosquito-Conserved piRNA Cluster Locus (MCpiRCL) composed of satellite DNA repeats. In the larger culicine mosquito genomes we detected highly regular periodicity in piRNA biogenesis patterns coinciding with the expansion of Piwi pathway genes. Finally, our resource enables detection of crosstalk between piRNA and siRNA populations in mosquito cells during a response to virus infection. The MSRG resource will aid efforts to dissect and combat the capacity of mosquitoes to tolerate and spread arboviruses

    Care management for Type 2 diabetes in the United States: a systematic review and meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This systematic review and meta-analysis aims at assessing the composition and performance of care management models evaluated in the last decade and their impact on patient important outcomes.</p> <p>Methods</p> <p>A comprehensive literature search of electronic bibliographic databases was performed to identify care management trials in type 2 diabetes. Random effects meta-analysis was used when feasible to pool outcome measures.</p> <p>Results</p> <p>Fifty-two studies were eligible. Most commonly reported were surrogate outcomes (such as HbA1c and LDL), followed by process measures (clinic visit or testing frequency). Less frequently reported were quality of life, patient satisfaction, self-care, and healthcare utilization. Most care management modalities were carved out from primary care. Meta-analysis demonstrated a statistically significant but trivial reduction of HbA1c (weighted difference in means -0.21%, 95% confidence interval -0.40 to -0.03, p < .03) and LDL-cholesterol (weighted difference in means -3.38 mg/dL, 95% confidence interval -6.27 to -0.49, p < .02).</p> <p>Conclusions</p> <p>Most care management programs for patients with type 2 diabetes are 'carved-out', accomplish limited effects on metabolic outcomes, and have unknown effects on patient important outcomes. Comparative effectiveness research of different models of care management is needed to inform the design of medical homes for patients with chronic conditions.</p

    An anatomic gene expression atlas of the adult mouse brain

    Get PDF
    Studying gene expression provides a powerful means of understanding structure-function relationships in the nervous system. The availability of genome-scale in situ hybridization datasets enables new possibilities for understanding brain organization based on gene expression patterns. The Anatomic Gene Expression Atlas (AGEA) is a new relational atlas revealing the genetic architecture of the adult C57Bl/6J mouse brain based on spatial correlations across expression data for thousands of genes in the Allen Brain Atlas (ABA). The AGEA includes three discovery tools for examining neuroanatomical relationships and boundaries: (1) three-dimensional expression-based correlation maps, (2) a hierarchical transcriptome-based parcellation of the brain and (3) a facility to retrieve from the ABA specific genes showing enriched expression in local correlated domains. The utility of this atlas is illustrated by analysis of genetic organization in the thalamus, striatum and cerebral cortex. The AGEA is a publicly accessible online computational tool integrated with the ABA (http://mouse.brain-map.org/agea)

    A Conserved PHD Finger Protein and Endogenous RNAi Modulate Insulin Signaling in Caenorhabditis elegans

    Get PDF
    Insulin signaling has a profound effect on longevity and the oxidative stress resistance of animals. Inhibition of insulin signaling results in the activation of DAF-16/FOXO and SKN-1/Nrf transcription factors and increased animal fitness. By studying the biological functions of the endogenous RNA interference factor RDE-4 and conserved PHD zinc finger protein ZFP-1 (AF10), which regulate overlapping sets of genes in Caenorhabditis elegans, we identified an important role for these factors in the negative modulation of transcription of the insulin/PI3 signaling-dependent kinase PDK-1. Consistently, increased expression of pdk-1 in zfp-1 and rde-4 mutants contributed to their reduced lifespan and sensitivity to oxidative stress and pathogens due to the reduction in the expression of DAF-16 and SKN-1 targets. We found that the function of ZFP-1 in modulating pdk-1 transcription was important for the extended lifespan of the age-1(hx546) reduction-of-function PI3 kinase mutant, since the lifespan of the age-1; zfp-1 double mutant strain was significantly shorter compared to age-1(hx546). We further demonstrate that overexpression of ZFP-1 caused an increased resistance to oxidative stress in a DAF-16–dependent manner. Our findings suggest that epigenetic regulation of key upstream signaling components in signal transduction pathways through chromatin and RNAi may have a large impact on the outcome of signaling and expression of numerous downstream genes.Leukemia & Lymphoma Society of America (3260-07 Special Fellow Award)Arnold and Mabel Beckman Foundation (Young Investigator Award)United States. National Institutes of Health (Director's New Innovator Award (1 DP2 OD006412-01))United States. National Institutes of Health (grant GM66269)modENCODE (grant U01 HG004270)United States. National Institutes of Health (training grant 5T32 GM07088-34

    Role of Pirh2 in Mediating the Regulation of p53 and c-Myc

    Get PDF
    Ubiquitylation is fundamental for the regulation of the stability and function of p53 and c-Myc. The E3 ligase Pirh2 has been reported to polyubiquitylate p53 and to mediate its proteasomal degradation. Here, using Pirh2 deficient mice, we report that Pirh2 is important for the in vivo regulation of p53 stability in response to DNA damage. We also demonstrate that c-Myc is a novel interacting protein for Pirh2 and that Pirh2 mediates its polyubiquitylation and proteolysis. Pirh2 mutant mice display elevated levels of c-Myc and are predisposed for plasma cell hyperplasia and tumorigenesis. Consistent with the role p53 plays in suppressing c-Myc-induced oncogenesis, its deficiency exacerbates tumorigenesis of Pirh2−/− mice. We also report that low expression of human PIRH2 in lung, ovarian, and breast cancers correlates with decreased patients' survival. Collectively, our data reveal the in vivo roles of Pirh2 in the regulation of p53 and c-Myc stability and support its role as a tumor suppressor
    corecore