4 research outputs found

    I Cannot Tell a Lie: Emotional Intelligence as a Predictor of Deceptive Behavior

    Get PDF
    Research has identified that perceived acceptability and likelihood of lying depend on the type of lie and personality characteristics such as honesty, kindness, assertiveness, and Machiavellianism. However, this research has focused on individuals’ experiences of their own emotions and neglected to consider how an individual’s understanding of others and their emotions influences deceptive behavior. I expanded upon this research during the summer of 2018 by investigating the relationship between emotional intelligence, personal intelligence, and perceived acceptability and likelihood of telling four types of lies, which are distinguished from one another based on their motivation (altruistic, conflict avoidance, social acceptance, or self‐gain). Participants were 80 University of New Hampshire undergraduate students who completed an online survey consisting of both self‐report and ability‐based measures. Results suggest that scores on ability‐based tests of personal intelligence may be useful in predicting an individual’s likelihood of telling lies for the purpose of social acceptance. Results also indicate a significant negative correlation between self‐reported likelihood of telling social‐acceptance lies and levels of personal intelligence, indicating that those with higher personal intelligence are less likely to tell social‐acceptance lies

    Multinational Outbreak of Listeria monocytogenes Infections Linked to Enoki Mushrooms Imported from the Republic of Korea 2016–2020

    No full text
    Keeping the global food supply safe necessitates international collaborations between countries. Health and regulatory agencies routinely communicate during foodborne illness outbreaks, allowing partners to share investigational evidence. A 2016–2020 outbreak of Listeria monocytogenes infections linked to imported enoki mushrooms required a multinational collaborative investigation among the United States, Canada, Australia, and France. Ultimately, this outbreak included 48 ill people, 36 in the United States and 12 in Canada, and was linked to enoki mushrooms sourced from one manufacturer located in the Republic of Korea. Epidemiologic, laboratory, and traceback evidence led to multiple regulatory actions, including extensive voluntary recalls by three firms in the United States and one firm in Canada. In the United States and Canada, the Korean manufacturer was placed on import alert while other international partners provided information about their respective investigations and advised the public not to eat the recalled enoki mushrooms. The breadth of the geographic distribution of this outbreak emphasizes the global reach of the food industry. This investigation provides a powerful example of the impact of national and international coordination of efforts to respond to foodborne illness outbreaks and protect consumers. It also demonstrates the importance of fast international data sharing and collaboration in identifying and stopping foodborne outbreaks in the global community. Additionally, it is a meaningful example of the importance of food sampling, testing, and integration of sequencing results into surveillance databases

    Nolanville Comprehensive Plan 2021-2041

    Get PDF
    Nearly five years after the completion of the 2015 Comprehensive Plan, TxTC partnered with the City of Nolanville again in 2019 with the ENDEAVR project. ENDEAVR (Envisioning the Neo-traditional Development by Embracing the Autonomous Vehicles Realm)— is an ambitious project to re-envision ”smart” city solutions in small towns with students from a wide range of university degree programs in urban planning, landscape architecture, visualization, computer science, and civil, electrical and mechanical engineering. ENDEAVR launched in 2018 with a $300,000 grant from the Keck Foundation, which supports projects that promote inventive educational approaches. The City of Nolanville sought to explore “smart” city solutions to make efficient and prudent improvements to traffic flow, public safety, optimize utility systems, high-bandwidth digital networks, and foster autonomous vehicles. Additionally, TxTC included these “smart” city solutions to update its 2015 comprehensive plan. The new 2020 comprehensive plan embeds “smart” city solutions into its priorities and capital improvement projects to foster diversity and continue to make Nolanville “A Great Place to Live”

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore