11 research outputs found

    Sea Buckthorn (Hippophae rhamnoides) Waste Biomass after Harvesting as a Source of Valuable Biologically Active Compounds with Nutraceutical and Antibacterial Potential

    Get PDF
    Funding Information: Funding: This research was funded by ERDF project nr. Nr.1.1.1.1/19/A/146 “Biorefinery processing of sea buckthorn non-fruit biomass using innovative techniques and comprehensive analytical investigation, for obtaining prospective for Latvian bioeconomy high value-added products, including serotonin”. Publisher Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.For sustainable sea buckthorn (Hippophae rhamnoides) berry production, the task at hand is to find an application for the large amount of biomass waste arising at harvesting. Sea buckthorn (SBT) vegetation is currently poorly studied. The purpose of this research was to assess the composition and potential of SBT twigs as a source of valuable biologically active substances. Water and 50% EtOH extracts of twigs of three Latvian SBT cultivars with a high berry yield and quality, popular for cultivation in many countries (H. rhamnoides ‘Maria Bruvele', ‘Tatiana', ‘Botanicheskaya Lubitelskaya'), were investigated for the first time. The phytochemical composition (UHPLC-ESI-MS/MS analysis) and biological activity of the obtained hydrophilic extracts were determined. The highest yield of polyphenolic compounds and serotonin was observed for ‘Maria Bruvele'. Hydrophilic extracts were investigated for radical scavenging activity (DPPH' test), antibacterial/antifungal activity against five pathogenic bacteria/yeast, cytotoxicity, and the enzymatic activity of alpha-amylase (via in vitro testing), which is extremely important for the treatment of people with underweight, wasting, and malabsorption. The results showed a high potential of sea buckthorn biomass as a source of valuable biologically active compounds for the creation of preparations for the food industry, nutraceuticals, and cosmetics.publishersversionPeer reviewe

    Effect of Microwave Pre-Treatment of Biomass on the Thermal Oxidative Conversion of Biomass Blends Containing Pre-Treated and Raw Biomass of Different Origination in Terms of Processing Rate and Heat Production

    No full text
    In this paper, the thermochemical conversion of selectively pre-treated binary blends composed of 30% microwave (MW) pre-treated biomass pellets (wheat straw, wood) and 70% of different origin raw biomass pellets (wheat straw, wood, or peat) was performed using originally developed experimental device with a heat output up to 20 kW. Biomass pellets were pre-treated at temperatures of 200 and 275 °C using a microwave laboratory scale torrefaction of the original construction. It was established that synergistic effects of interaction between the components of binary blends promote an increase in the efficiency of their thermochemical conversion by 5.8–9.4%. It was assumed that synergistic effects of thermochemical conversion can be related to an increase in surface area and porosity of pre-treated pellets. With a focus on different steps and rates of biomass degradation and heat amounts released for different types of blends, the thermal analysis (DTG/DSC) of ground blends in the temperature range of 25–650 °C was performed in air media with the heating rate of 10 °C/min. According to the thermal analysis data, the heat energy yield of ground blends meets the requirements of linear regression based on the additivity principle and the development of synergistic effects during thermochemical conversion of ground blends was not detected

    Effect of Microwave Pre-Treatment of Biomass on the Thermal Oxidative Conversion of Biomass Blends Containing Pre-Treated and Raw Biomass of Different Origination in Terms of Processing Rate and Heat Production

    No full text
    In this paper, the thermochemical conversion of selectively pre-treated binary blends composed of 30% microwave (MW) pre-treated biomass pellets (wheat straw, wood) and 70% of different origin raw biomass pellets (wheat straw, wood, or peat) was performed using originally developed experimental device with a heat output up to 20 kW. Biomass pellets were pre-treated at temperatures of 200 and 275 °C using a microwave laboratory scale torrefaction of the original construction. It was established that synergistic effects of interaction between the components of binary blends promote an increase in the efficiency of their thermochemical conversion by 5.8–9.4%. It was assumed that synergistic effects of thermochemical conversion can be related to an increase in surface area and porosity of pre-treated pellets. With a focus on different steps and rates of biomass degradation and heat amounts released for different types of blends, the thermal analysis (DTG/DSC) of ground blends in the temperature range of 25–650 °C was performed in air media with the heating rate of 10 °C/min. According to the thermal analysis data, the heat energy yield of ground blends meets the requirements of linear regression based on the additivity principle and the development of synergistic effects during thermochemical conversion of ground blends was not detected

    Effects of contents and component composition of ash and organic constituents on fuel characteristics of softwood and wheat straw hydrolytic processing residues

    No full text
    Processing of biomass for obtaining of liquid ethanol, platform chemicals and solid biofuel, is topical biorefinery schema intensively developing. Acid hydrolysis, separated hydrolysis and fermentation, and simultaneous saccharification and fermentation are integrated with other treatments for the advanced technology development. The aim of this work was estimation of effect of softwood and wheat straw hydrolysis type on fuel characteristics of rich-in-lignin residues with emphasis on content and component composition of ash and feedstock. Elemental Analysis; Atomic absorption spectroscopy; calorimetric method; Klason lignin determination were used. Laboratory scale pellet mill KAHL 14-175 and original small pilot-scale gasifier were used for study of residues granulation ability and combustion behavior of pellets obtained. The ash content in softwood residues slightly increase but does not exceed 1%, for wheat straw residues it is >14% (0,2% and 10% for feedstock, correspondingly). The ashing temperature of 650oC is experimentally established as optimal. Detection of ash component allows to foreseen possible contamination connected with materials of the devices and chemicals used in the technological stream. Combustion mechanism of solid residues differs from that of feedstock by increasing of ratio duration of glue combustion to flame combustion steps, that is more characteristic for coal. The efficiency of biomass combustion was regulated by changing the ratio of primary and secondary air supply. Direct correlation established between higher heating value and Klason lignin content for samples, allows to recommend these analyses for evaluation of biomass potential as a fuel. Residues under study meet the requirements of EU Standard CN/TS 335

    Characteristics of the Main- and Side-Stream Products of Microwave Assisted Torrefaction of Lignocellulosic Biomass of Different Origination

    No full text
    In this paper, the yields and composition of solid and condensable products that were obtained by microwave-assisted torrefaction of softwood, wheat straw, and peat fuel pellets, defined as main- and side-stream torrefaction products, were studied. The torrefaction process, at temperatures varied in the range of 200–300 °C, was performed using a laboratory-scale torrefactor of original construction. Water-enriched fractions were distilled off from condensable products to isolate tar fractions, the fuel characteristics of which were compared with those of solid fractions. Py-GC/MS/FID, GC/MS/FID, thermal analysis, elemental analysis, and wet chemistry methods were used to characterize the main- and side-stream torrefaction products, with a focus on their valorization according to the biorefinery approach. The simultaneous development of the destruction and condensation processes in lignocarbohydrate complexes during microwave treatment leads to an increase in the relative portion of aromatic compounds in torrefied biomass, increasing the higher heating value (HHV) of the solid fractions. The increase up to 60% of the heat amount that was liberated due to the thermal oxidative conversion of solid fractions vs. that of the non-treated ones was established by DSC tests. The heat that was liberated by the combustion of the tar fractions was much lower than that of solid fractions, which was explained by the composition of tars, influencing their thermal conversion

    SYNTHESIS OF LIGNIN-BASED INORGANIC/ORGANIC HYBRID MATERIALS FAVORABLE FOR DETOXIFICATION OF ECOSYSTEM COMPONENTS

    No full text
    Combination of lignin matrices (including those modified with silicon oligomers or quaternary ammonium compounds) and such inorganic building blocks as copper and manganese cations (Cu2+, Mn2+) made it possible to synthesize novel hybrid organic-inorganic materials. The synthesized hybrid materials were characterized with significantly increased (2-9 times) values of specific surface area in comparison with those for non-modified and Si-modified precursor matrices. The Cu2+-containing hybrid materials differed by enhanced sorption capacity towards proteins and bacteria

    Granulated Animal Feed and Fuel Based on Sea Buckthorn Agro-Waste Biomass for Sustainable Berry Production

    Get PDF
    Funding Information: This work was financially supported by the ERDF project no. 1.1.1.1/19/A/146 “Biorefinery processing of sea buckthorn non-fruit biomass using innovative techniques and comprehensive analytical investigation, for obtaining prospective high value-added products for the Latvian bioeconomy, including serotonin”. Publisher Copyright: © 2023 by the authors.The industrial harvesting of sea buckthorn (SBT) berries with twigs and subsequent pruning creates a large volume of lignocellulosic agro-waste. This study aimed to valorize this agro-waste as a raw material for animal feed and fuel granules, for developing a sustainable cascading SBT production scheme. Five SBT cultivars’ biomasses were characterized by analytical pyrolysis, mass spectrometry, and GC analysis. Condensed tannins, which are undesirable components for animal feed, were separated by extraction. The residue was analyzed for total protein, vitamins (A, C, and E), ash, crude fat, wood fiber, and macroelements (P, K, Ca, and Na), and showed great potential. The heavy metal (Cd, Hg, and Pb) content did not exceed the permitted EU maximum. Granulation regimes were elaborated using a flat-die pelletizer, KAHL 14-175. The digestibility and the amount of produced gas emissions were determined using in vitro systems that recreate the digestion of small ruminants. The investigation proved that SBT leaves and stems are a unique underutilized source of animal feed, used alone or in combination with others. Twigs, due to their thorns, were granulated and valorized according to standards for application as fuel. The scheme offered in this study enables SBT agro-waste utilization and sustainable SBT berry production.Peer reviewe
    corecore