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Abstract: The industrial harvesting of sea buckthorn (SBT) berries with twigs and subsequent pruning
creates a large volume of lignocellulosic agro-waste. This study aimed to valorize this agro-waste
as a raw material for animal feed and fuel granules, for developing a sustainable cascading SBT
production scheme. Five SBT cultivars’ biomasses were characterized by analytical pyrolysis, mass
spectrometry, and GC analysis. Condensed tannins, which are undesirable components for animal
feed, were separated by extraction. The residue was analyzed for total protein, vitamins (A, C, and
E), ash, crude fat, wood fiber, and macroelements (P, K, Ca, and Na), and showed great potential.
The heavy metal (Cd, Hg, and Pb) content did not exceed the permitted EU maximum. Granulation
regimes were elaborated using a flat-die pelletizer, KAHL 14-175. The digestibility and the amount of
produced gas emissions were determined using in vitro systems that recreate the digestion of small
ruminants. The investigation proved that SBT leaves and stems are a unique underutilized source of
animal feed, used alone or in combination with others. Twigs, due to their thorns, were granulated
and valorized according to standards for application as fuel. The scheme offered in this study enables
SBT agro-waste utilization and sustainable SBT berry production.

Keywords: sea buckthorn; agro-waste; lignocellulosic biomass; condensed tannins; animal feed;
digestability; greenhouse gas emissions; small ruminants; granulated feed; granulated fuel

1. Introduction

The world population is rapidly increasing: it is expected that there will be nearly
10 billion people on Earth by 2050 [1]. Agricultural production grows accordingly [2], and
sustainability is the only way for mankind to survive, minimize negative effects on the
environment, and keep the planet’s population healthy [3].

Animal farming demands 70% of agricultural land and 30% of the earth’s land
surface [4–6]. An increase of 50% in animal feed is necessary by the year 2050; thus,
to prevent the expansion of pasture areas with more than 500 mln hectares (hm2) [1] and
save the forests, it is extremely important to study the huge amount of agricultural waste
and use it in the best way possible. Agro-waste, as a source of animal feed and feed
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additives, could be one of the possible ways to sustainable agriculture. Feed accounts
for 60–70% of total expenses for livestock and poultry [7]. Insufficient amounts of raw
materials and growing costs have led to an imbalance in the animals’ diets and a decrease
in zootechnical indicators.

People’s growing interest in a vegetarian diet nevertheless supports the demand for
milk products. If everyone were vegan, the land use for agriculture would decrease by
75% [8]. However, it is highly unlikely to happen as vegans today comprise a mere 1–2% of
the world population [9,10]. The problem of waste-free production is real one in any case.

Hippophae rhamnoides L. (sea buckthorn, SBT) of the family Elaeagnaceae is a unique
fruiting shrub tree that can survive in extreme temperatures (from –43 ◦C to 55 ◦C) and
grows well under drought conditions. According to legend, people in ancient Greece
discovered the plant and its benefits in feeding racehorses [11]. Today, the industrial
economically viable harvesting of SBT berries is possible only by cutting the whole berried
branch. An SBT plantation can yield 25 tons of berries from 1 hm2 bi-yearly, which is
12.5 tons per year and hm2 [12]. Waste lignocellulosic biomass amounts to around 20–30%
of the berries’ mass. Foliage yield from the whole SBT tree could reach 16 tons/ha which
is more than from any shrubs and grasses [13]. Moreover, berry-producing trees must be
cut every four years, otherwise, berries will be difficult to harvest. SBT trees that are used
for land reclamation and the improvement of soil quality, thanks to their roots’ nitrogen-
fixing ability (an SBT plantation with 8–10-year-old trees is able to fix nitrogen in the
amount of 180 kg/hm2 in a year [14]), also have to be pruned. As a result, lignocellulosic
biomass, containing twigs, stems, leaves and even roots, is appearing as agro-waste in
large amounts. SBT grows in 52 countries, on a total area of 3 mln hm2, according to a
2023 report [15]. The SBT berry has a high nutritional and pharmaceutical value [11,15–22];
however, its economic potential is still underdeveloped due to the high expenses of SBT
berry harvesting [23]. The human labor expenses for SBT harvesting were determined to
be 58% of the total production costs [24,25]. Therefore, the application of side streams is
necessary both for sustainability and economic feasibility. “Fodder trees” can be considered
as new multipurpose solutions since the side-product—agro-waste—grows in the same
cultivation area and does not demand new agricultural lands for producing feed [26,27].

Currently, SBT wood residues (twigs and stems) are mainly used as a renewable energy
source. A 6-year-old SBT orchard can provide tons of fuel wood, whereas, one ton of SBT
wood is equal to 0.68 tons of conventional coal [28]. Out of the total SBT biomass, leaves
are valorized for other applications in some countries. In China, Mongolia, Scandinavian
countries, Germany, the Czech Republic, Latvia, Russia, and Greece, SBT leaves are used
for the preparation of tea with antioxidant properties [11,29–31]. In India, leaves are used as
a feed additive for chicken and cattle [32], and in Mongolia—for the treatment of colitis and
enterocolitis in humans and animals [33]. It was found that SBT leaves are the richest source
of protein compared to other tree leaves [34], and SBT berries have a stimulating influence
on the growth, immunity, and production performance of poultry and livestock without
toxicity effects [17,35]. The body weight and egg production of chicken increased greatly
after being supplemented with SBT leaves, seeds, and fruit residues [13]; however, further
research is necessary in this area [36,37]. SBT pomace can be added successfully to the diet
of ram lambs as well [38]. No toxic or carcinogenic side effects of berry-based products
were reported [18]. There are some commercially available animal digestive supplements
based on berries [39,40]. However, the research on the SBT agro-waste biomass profile of
bioactive components and research on its influence on ruminants is still very limited [19,36].
There are no data available on small ruminant feed based on SBT lignocellulosic biomass,
and there is no commercial animal feed production based on SBT agro-waste biomass.

Condensed tannins (CTs), except when in small concentrations, could have a negative
effect on animals’ digestibility [41]. Moreover, animals may not like their bitter taste.
Therefore, they could be isolated and, as shown in previous studies, could find applications
in health care, cosmetics, and food industries due to their anti-inflammatory and anti-
bacterial properties [42].
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Measurements of gas production could help to find correct feed compositions to
minimize the negative greenhouse gas (GHG) impact on the environment. Digestive health
remains one of the key factors in the high productivity of farm animals. The leaves and
stems of SBT can be compared with grass in terms of a wide range of biologically active
compounds and nutrients; thus, they can be used as a valuable food source for animals
during winter. Twigs that have sharp thorns which are dangerous for animals even after
grinding could be investigated for granulated fuel production. The densification of SBT
biomass residues by granulation after CT extraction enables better transportation, dosing,
and storage properties.

The objective of this study was the evaluation of SBT agro-waste as a raw material
to obtain granulated animal feed and fuel granules for the development of a sustainable
cascading production scheme in SBT cultivation (Figure 1).
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Such a scheme for cascading sustainable SBT processing, as well as experimental work
on nutritional values, digestibility, and feed/fuel granule compositions, are novelties of the
present research: all vegetative parts of the SBT tree (stem, leaves, twigs, and roots) were
evaluated for the production of granulated feed for small ruminants; twig extracts were
studied for the production of feed functional ingredients with antimicrobial properties; and
extraction residues were evaluated as granulated fuel.

The development of alternative feed and feed additives on the market is also necessary
to optimize livestock feeding costs and to provide a backup supply chain in times of
economic instability and fluctuating energy prices. Building berry-producing plantations
requires considerable investment [12]—and, thus, innovative agro-waste utilization turning
it into valuable products is necessary.

2. Materials and Methods
2.1. Collection of Agro-Waste Biomass

The stems (ST), twigs (TW), leaves (LV), and roots (R) comprising the agro-waste
biomass (further in the text—biomass) of SBT cultivars ‘Maria Bruvele’ (MB), ‘Botanich-
eskaya Lubitelskaya’ (BL), ‘Tatiana’ (TAT), ‘Tarmo’ (TM), and ‘Otto’ (OT) were collected
from the four-year-old trees of an SBT plantation area in Latvia (80 trees of each cultivar)
during the summer of 2021. The trees grew on the same land, and they were treated the
same. The biomass was dried at room temperature. A knife mill, Retsch SM100 (Retsch,
Haan, Germany), was used for grinding, and the LV particle size after grinding was 1–2 mm,
and those of ST, TW, and R—2–4 mm.
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2.2. Isolation of the Condensed Tannins from the ST and TW Biomass

An ethanol–water solution (80:20 vol.% ethanol:water solution, further in the text—80%
EtOH) was used for the biomass extraction followed by CT isolation from the extract; the
temperature of the extraction solution was 60–70 ◦C, and the mass ratio of biomass sample
to 80% EtOH = 1:8, w/w. CT separation from the extract was carried out using a Sephadex
LH-20 as described in Janceva et al. [42]. Confidence interval: CI ≤ 0.5% at α = 0.05.

2.3. Mechanochemical Treatment of SBT Biomass

The mechanochemical treatment of SBT initial ST biomass and ST biomass samples
after CT extraction was carried out for evaluation of its effect on digestibility. Mechanochem-
ical treatment was carried out separately for each sample in an original trituration-type
mill (original construction, Riga, Latvia). The trituration of ST was carried out for 20 min,
at 100 rpm.

2.4. Initial and Treated Biomass Characterization

All determinations are expressed on a dry matter (DM) basis (moisture content of
initial and treated biomass less than 1%).

2.4.1. Crude Fiber Content Determination

The content of crude fiber in SBT biomass samples was determined gravimetrically
by acid hydrolysis with H2SO4 (1.25%, w/v), used for the extraction of sugars and starch,
followed by alkaline hydrolysis with NaOH (1.25%, w/v) which removes proteins, some
hemicellulose, and lignin, as described by Joslyn et al. [43]. The weight of the biomass
sample for one analysis was 20 g of DM. Each experiment was performed in triplicate.
CI ≤ 0.3% at α = 0.05.

2.4.2. Total Protein Content Determination

The Kjeldahl method was applied for the determination of the total protein content in
the SBT biomass [44]; a sample of 2 g was taken for analysis, and an appropriate nitrogen
factor (NF—6.25) was used for the estimation of the total protein content. Each experiment
was performed in triplicate. CI ≤ 0.3% at α = 0.05.

2.4.3. Determination of Crude Fat, Crude Ash, Macro-Elements, and Heavy Metal Content

To ascertain the content of crude fat, the extraction of fat from the SBT biomass samples
by hexane was used. The weight of the obtained fat was measured, and the content of fat
was expressed in % of the weight of the biomass sample. A sample of 10 g was taken for
each analysis. The crude ash content (sample of 5 g for each experiment) was determined
after biomass sample ignition at 550 ◦C in a Carbolite ELF 11/6B furnace while measuring
the weight of the residue. The content of ash was expressed as % of the weight of the
biomass sample. Organic matter content was calculated as the difference between the dry
biomass content (taken as 100%) and the content of ash in %.

The contents of the macroelements and heavy metals were determined by ICP-MS
analysis using a Thermo Fisher Scientific iCAP TQe (Bremen, Germany) fitted with a
nebulizer, a quartz spray chamber, with a sampling cone made of nickel, and a skimmer
cone with platinum tip, as described in Naccarato et al. [45]. A peristaltic pump and an
autosampler ASX-560 (both from Thermo Fisher Scientific, GmbH, Bremen, Germany)
were used to pump the solutions from the tubes. Following a 20 to 30 min period of ICP-
MS stabilization, the working capacity was adjusted before the analyses to maximize the
signal and minimize interference effects by applying a tuning solution based on the torch’s
horizontal and vertical location, the extraction lens, and the CCT (collision cell technology)
focus lens. The highest purity argon and helium gas (99.99%) was employed as the carrier
gas at 0.8 mL/min in auxiliary flow, at 1.0 mL/min, and 5.3 mL/min in nebulizer flow.
Nitric acid (65%), Suprapur® for the trace analysis (Supelco), and hydrogen peroxide (30%)
were all used in the sample digestion process. Calibration curves for quantitative analysis
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were elaborated with the diluting of multielement solutions (10 mg/L); Cd, Ca, Pb, K, and
Na (10 mg/L, Merck, Germany); and Hg element solution (1000 mg/L, Merck, Germany).
The calibration standards, the procedure blanks, and the samples made up each batch of
analysis. The weight of each sample was 100 mg. The majority of the elements under
investigation were examined in kinetic energy discrimination mode (KED-mode) at the
operational helium gas collision cell. Each experiment was performed in triplicate.

CI for crude fat: CI ≤ 0.6% at α = 0.05; for ash and organic matter: CI ≤ 0.9% at α = 0.05.
CI for heavy metal content is given in the Results Section 3.5, under corresponsing Table.

2.4.4. Determination of The Total Amount of Carbohydrates

Gas chromatography (GC) analysis before and after hydrolysis, reduction, and acety-
lation was used to determine the total amount of carbohydrates in the extracts, as well
as their composition. For each experiment, a 10 mg sample was used. The analysis was
performed using a GC System of the Agilent 6850 Series (Agilent Technologies, Inc., Santa
Clara, CA, USA) as described in Blakeney et al. [46]. A DB-1701 column was used (the
length of the column: 30 m; internal diameter: 0.25 mm; layer thickness: 0.25 µm). The
analysis was repeated 3 times for each sample. CI ≤ 0.8% at α = 0.05.

2.4.5. Determination of Vitamin Content

The content of vitamin C (ascorbic acid) in the SBT biomass was determined by
high-performance liquid chromatography (HPLC) as described in Ciulu et al. [47]. An
HPLC-UV-Vis/-RI system (high-performance liquid chromatograph with UV–vis and
RI detector) was used (Vanquish CORE, Dionex Softron GmbH, Part of Thermo Fisher
Scientific, Germering, Germany). The extracts were rapidly dissolved in a purified water
mixture of 2 M NaOH and 1 M phosphate buffer. Separation was performed on an Eclipse
XDB-C18 Zorbax column (5 µm, 150 cm × 0.46 cm i.d., Agilent); the column was heated to
35 ◦C, and as a mobile phase, trifluoroacetic acid aqueous solution (0.025%, v/v) (A) and
acetonitrile (B) were used. The gradient elution was applied (100% to 60% A in 20 min), at a
flow rate of 1 mL/min. The injection volume was 20 µL. The UV detector settings: 254 nm.

The content of vitamin E as α-tocopherols and vitamin A as retinol in the biomass
were determined by HPLC analysis, as described by Sibel Konyalιoğlu et al. [48] using
an HPLC-UV-Vis/-RI system (Dionex Softron GmbH, Part of Thermo Fisher Scientific,
Germering, Germany). A Hichrom 5 C18 column (25 cm × 4.6 mm i.d.) was used; methanol
was used at the mobile phase, and the flow rate was 2 mL/min. The column was heated to
40 ◦C. The dry extracts were dissolved in methanol. Ten microliters of each aliquot were
injected into the HPLC column. Detection was at 292 nm. Each experiment was performed
in triplicate. The CI is given in the Results Section 3.5, under corresponsing Table.

2.4.6. Analytical Pyrolysis

The analytical pyrolysis (Py-GC/MC/FID) method was applied for the chemical char-
acterization of SBT biomass. The temperature of pyrolysis was 500 ◦C and the heating
rate was 600 ◦C/s. A Frontier Lab Micro Double-shot Pyrolyzer Py-3030D directly cou-
pled with a Shimadzu gas chromatograph GC/MS/FID-QP ULTRA 2010 (Fukushima,
Japan) was used. The capillary column was RTX-1701 (Restec, Metairie, Louisiana, USA),
60 m × 0.25 mm × 0.25 mm film. The injector temperature was 250 ◦C; ion source with
EI of 70 eV. The MS scan range was 15–350 m/z. Helium was used as a carrier gas, the
flow rate was 1 mL/min, and the split ratio was 1:30. A sample of 1.20 mg was taken for
each analysis. The individual compounds were identified by GC/MS with the help of
library MS NIST 11 and NIST 11s. On the basis of GC/FID data, the relative peak areas for
the individual compounds were calculated using Shimadzu software. The relevant peaks’
summed molar areas were normalized to 100%. The pyrolysis analysis was repeated four
times and the data were averaged. The variation coefficient of measurement was ≤5%.
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2.4.7. Elemental Analysis

The elemental composition (C, H, and N) of the SBT biomass samples was determined
using a Vario MACRO CHNS elemental analyzer with a heat conduction detector (Elemen-
tar Analysensysteme GmbH, Langenselbold, Germany). The dry sample was weighed in a
foil (weight of sample: 50 mg DM). The WO2 powder was used as a combustion catalyst,
in a ratio of 1:1 (w/w). The obtained sample/catalyst mixture was pressed into a tablet
and placed in the automatic sample feeder (carousel). The equipment was controlled in a
computerized mode and VARIOEL V5.16.10 software was used for data processing. The
results were expressed as percentages of DM. Three repetitive analyses were performed for
each sample. CI ≤ 0.2% at α = 0.05.

2.5. Preparation of Animal Feed Compositions

Stem (ST) biomass in compositions of animal feed was used as the residual frac-
tion after extraction and CT separation and after mechanochemical pre-treatment (MT;
mechanochemically treated stems further in the text—ST/MT). Leaves (LV), roots (RT),
ST/MT, and mixes of LV with ST/MT were investigated as feed additives. The ratios of ST,
LV, and RT used for analysis were as follows: LV 100%, ST 100%, ST/MT 100%, LV:ST/MT
(1:1; w/w), and LV:ST (1:1; w/w). In addition, for the granulation experiment, the mix with
roots was used, LV: ST/MT (1:1, w/w) + 5% of roots.

2.6. Determination of Released Gas Emissions, In Vitro Analysis

The amount of the in vitro gas production (GP) was determined using an ANKOM RF
Gas Production System (AGPS; ANKOM Technology, Macedon, NY, USA), which is designed
for analysis of different feed sources and feed additives. The in vitro gas production method
is based on the relationship between the fermentation in the rumen and the gases formed and
can also be used to measure and quantify nutrient utilization. Rumen fluid was collected from
slaughterhouse animals (rams) following the protocol of Fortina et al. (2022) [49], with small
modifications. It was decided to use rumen fluid collected from slaughterhouse animals, first,
because a significant difference in in vitro digestibility has not been found when the fluid was
obtained from slaughtered or fistulated ruminants [50], and, second, because this was a more
ethically acceptable approach [51]. It was reported that it is possible to store the rumen fluid
without significant quality changes by putting it in thermic bottles wrapped in a thermic bag,
for a period of up to 300 min after collection [49]. The methodology and test conditions were
in accordance with the prescriptions provided by the manufacturer and following the protocol
of Videv [52]. In short, a feed sample in the amount of 0.500 ± 0.001 g, 25 mL of rumen fluid,
and 50 mL of incubation medium, made as described by Theodorou et al. [53], were placed
in each of the modules of the system. Each of the 50 modules of the ANKOM system has
pressure measuring sensors installed (the range is: −69 to 3.447 kPa; resolution: 0.27 kPa;
accuracy: ± 0.1% of the measured value). Specialized software received the data from every
module through a wireless connection and recorded it every 30 s. GP was expressed as mL/g
incubated DM. The changes in gas pressure accumulated during 24 and 48 h of fermentation
(∆P) were converted into volume units by applying the ideal gas law:

GP (mL/g DM) = (∆P/Po) × Vo, (mL/g incubated DM), (1)

where ∆P is the change in the accumulated pressure (expressed in kPa) at the top of the
module, Vo is the volume of the bottle at the top (235 mL), and Po is the atmospheric
pressure which was recorded by the apparatus before the beginning of the experiment.

For taking into account the final volume of released gas from the rumen fluid itself, a
blank module without a sample of the feed was used. The zero module, placed above the
incubator, took into account the atmospheric pressure in the room and corrected the data
according to atmospheric pressure. The samples were analyzed in triplicate.
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2.7. Determination of Digestibility of the SBT Biomass Samples

For the evaluation of digestibility, an Ankom Daisy incubator was used (Ankom
Technology, Macedon, NY, USA). The rumen fluid, used in this testing, was collected as
described in Section 2.6. The methodology and test conditions were in accordance with the
manufacturer’s prescriptions and followed the protocol of Kiliç et al. [54]. Four rotating
digestion jars (or cylinders) were placed in the specially designed and controlled Daisy
incubator where a constant, uniform heat (≈39 ◦C) was maintained and agitation was
provided. A buffer solution (1600 mL) and rumen fluid (400 mL) were used as inoculums
for each cylinder. The dry samples in the amount of approximately 500 mg were placed in
filter bags (25 pcs). Then, the filter bags were placed into the cylinders with the inoculum.
Aeration of the cylinder was performed for 30 s using CO2, and then the cylinders were
tightly closed (immediately after aeration) and placed in the incubator for 48 h. After 48 h of
incubation, the filter bags were taken out from the incubator. Water was used for cleaning
the bags, and then the bags were dried at 105 ◦C, for 3 h. Analysis for neutral detergent
fiber (NDF) digestibility of the contents of the bags was performed with a fiber analyzer.
In vitro true digestibility was calculated according to the following equation:

IVTD, % = 100 − ((W3 − (W1xC1)) × 100)/W2 (2)

where IVTD is the in vitro true digestibility of feed, W1 is the weight of the filter bag, W2 is
the weight of the sample put in the bag, W3 is the weight of the bag with the sample
after NDF analysis, and C1 is the correction coefficient for the weight of the bag without
a sample.

Three repetitions of the in vitro experiment were performed. The confidence intervals
are given in the Results Section 3.7.

2.8. Antimicrobial Activity of the SBT Fraction

Analysis of the antimicrobial activity of the residual fraction after CT separation from the
extracts of both stems and twigs (MB/ST+TW) was performed at the University of Latvia,
Faculty of Biology. Several reference microbial strains were used, which were obtained
from the Latvian Microbial Strain Collection (MSCL), University of Latvia: Pseudomonas
aeruginosa MSCL 3314, Staphylococcus aureus MSCL 3340, Escherichia coli MSCL 332, Bacillus
cereus MSCL 330, and Candida albicans MSCL 378. Antimicrobial activity was analyzed in
96-well plates by the two-fold serial broth microdilution method [55]. As a result, the values
of the minimum inhibitory (MIC) and minimum bactericidal/fungicidal concentrations were
ascertained (MBC/MFC). CI ≤ 0.01 at α = 0.05.

2.9. SBT Biomass Granulation and Characterization of the Pellets
2.9.1. Biomass Granulation

For the simulation of the pelletizing in real production conditions, a laboratory pel-
letizer KAHL 14-175 (Amandus Kahl GmbH & Co. KG, Reinbek, Germany) equipped
with a flat die, analogous to the factory-scale KAHL granulators, was used for granulation.
The channel diameter was 6 mm, and the channel length-to-diameter ratio was 4:1. Each
experiment was performed in triplicate. Preliminary granulation of sawdust until the
equilibrium temperature in the pelletizer reached 50 ◦C was performed. The weight of the
studied biomass used for one granulation experiment was 2 kg.

2.9.2. Characterization of the Pellets

The measurement of the ash content was performed, expressed as a % of the weight of
the residue after the ignition of solid biomass samples at 550 ◦C in a muffle furnace to the
initial weight of the solid biomass sample, according to the EN ISO 18122:2023 standard [56].
Higher heating value (HHV) was determined experimentally by burning granules in a
calorific bomb of original construction (Li-104, Latvia), according to the standard ISO
18125:2017 (solid biofuels) [57] and calculated on a DM basis. A sieve with a 3.15 mm cell
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size was used for the separation of fines (ISO 3310) [58]. After the fines separation, the
determination of the durability (DU) and bulk density (BD) was performed based on the
European standards EN ISO 17831-1:2016 [59] and ISO 17828 [60], correspondingly. The CI
for the HHV and LHV of the pellets: ±0.6 MJ/kg; the CI for durability: ±0.7%; the CI for
bulk density: ±11 kg/m3; the CI for ash content: ±0.6%; the CI for the average length of
pellets: ±10 mm.

2.10. Statistical Analysis

All experiments were conducted in triplicate, except for analytical pyrolysis
(Py-GC/MS/FID) and gas chromatography (GC/MS/FID) analysis where four repeti-
tive experiments were performed. The results are expressed as means. Microsoft Excel
2016 was used for statistical analyses. Confidence intervals (CI) were calculated for a mean
using Student’s t-distribution, and a significance level of 5% was applied (α = 0.05). For
the evaluation of the strength of the linear relationship between two different variables,
Pearson’s correlation coefficient was calculated. A significance level of p < 0.05 was applied.

3. Results and Discussion
3.1. Chemical Composition of SBT Biomass
3.1.1. Organic Matter in the Biomass

It was found that the biomass samples had a high content of organic matter
(95.5–98.1%/DM), which included such components as proteins, fats, fiber, and non-
structural carbohydrates (sugar and starch). The ash content of the SBT biomass samples
ranged from 1.9 to 5.2%/DM. The highest ash content was in leaves (4.8–5.2%/DM) and
roots (4.0–4.5%/DM).

3.1.2. Relative Composition of SBT Biomass by Py-GC/MS/FID

According to the results of analytical pyrolysis analysis, the main components of
organic volatile products of SBT biomass DM are carbohydrates, including low-molecular-
weight sugars, starch, and various non-starch polysaccharides, which are the most impor-
tant sources of energy for non-ruminants and ruminants. The total carbohydrates-derived
volatile contents in the SBT stems, leaves, and roots were 66.7–68.4% rel, 56.7–60.6% rel,
and 72.8–75.9% rel/TVP, respectively (Figure 2).
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Figure 2. Py-GC/MS/FID data of organic volatile products of SBT biomass: TAT—Tatiana;
BL—Botanicheskaya Lubitelskaya; MB—Maria Bruvele; OT—Otto; TM—Tarmo; ST—stem;
LV—leaves; R—roots.

The carbohydrate concentration of the SBT roots was 1.1 and 1.3 times higher in
comparison to the stems and leaves biomasses, respectively.

3.1.3. Carbohydrate Composition by GC-MS

Based on the results of gas chromatography analysis, the main sugar monomer units
of roots’ carbohydrate composition were glucose (73.6–77.1%/total carbohydrate content
of root DM) and mannose (10.1–12.9%/total carbohydrate content of root DM). The total
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contents of galactose, xylose, and arabinose were 2.1–3.1%, 3.2–4.6%, and 6.5–6.8%/total
carbohydrate content of root DM, respectively (Figure 3).
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Figure 3. The sugar composition in total carbohydrates of SBT biomass (GC data): TAT—Tatiana;
BL—Botanicheskaya Lubitelskaya; MB—Maria Bruvele; OT—Otto; TM—Tarmo; ST—stem;
LV—leaves; R—roots.

The amount of glucose in the composition of total identified sugars of the SBT stems,
roots, and leaves was close for each vegetative part between the five cultivars. The amount
of xylose was the highest for the stems of BL and TAT. Xylose is not a desirable compo-
nent in feed: it was proven that in high amounts it could reduce ruminal digestibility
of various animal feeds [61,62]. Therefore, for the subsequent first experiments, stem
samples of MB with comparatively smaller content of xylose were chosen. The structural
(free) carbohydrate (monosaccharide) content in SBT biomass did not exceed 1%/DM. To
make carbohydrates more available as an energy source, pretreatment was considered.
It was reported that it is possible to increase the surface area of cellulose up to 106 times
by decreasing its particle size [63], and thus improve the nonmotile cellulolytic microbe
penetration into the cell lumen [64].

3.1.4. Relative Composition of SBT Biomass Phenol/Lignin Part by Py-GC/MS/FID

The total phenol/lignin-derived volatile (Ph/L-DV) contents in the SBT stems, leaves,
and roots were 24.4–25.4% rel, 16.7–17.6% rel, and 12.8–15.3% rel/TVP, respectively. The
phenol/lignin-derived pyrolysis products can be divided into phenyl (Ph) and benzyl (B),
guaiacyl (G), and syringyl (S) derivatives in SBT biomass. The Ph/L-DV of SBT stems
have the highest content of G derivative units (43.8–50.3% rel/Ph/L-DV), and fewer S
(32.0–35.0%/ rel Ph/L-DV) and Ph and B units (17.4–21.2% rel/Ph/L-DV). The Ph/L-DV
of leaves and roots presented more Ph and B derivative units, 40.8–44.9% and 69.7–71.9%,
respectively (Figure 4).
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Figure 4. Relative contents (%) of phenyl and benzyl, guaiacyl, and syringyl derivatives in the
Ph/L-DV released after Py-GC/MS of SBT biomass: TAT—Tatiana; BL—Botanicheskaya Lubitelskaya;
MB—Maria Bruvele; OT—Otto; TM—Tarmo; ST—stem; LV—leaves; R—roots.

The phenyl and benzyl derivatives came from polyphenolic compounds that have
antioxidant activity [65] and could serve for the oxidative stability of animal feed. Since
phenolic compounds will remain in the residual biomass fraction after the separation of
CTs, their antibacterial activity will be tested (Section 3.1.2). Lignin is a hardly digestible
source and its strong bonds in lignin–carbohydrate complexes are the main obstacle to
wood-containing part application in animal feed [66]. Therefore, mechanochemical pre-
treatment was further investigated in this study (Section 3.3) for the possibility of degrading
the cell wall.

3.2. CT Separation

According to the literature data, CTs, which are found among polyphenolic com-
pounds in SBT biomass, are also anti-nutritional since they bind proteins. However, CTs are
strong antioxidant and antimicrobial agents and can be used in cosmetics, the production
of adhesives, and other related industries [19,67]. Among the studied biomass samples
(stems, twigs, roots, and leaves) only SBT stems and twigs contained CTs in an amount of 6
to 11%/DM. Only the stems could be used for animal feed production since the twigs have
sharp thorns, and therefore twigs will be tested for granulated fuel production. However,
CT, as a valuable compound, was preliminarily isolated from both stems and twigs. The
correctly chosen extractant made it possible to completely remove CTs from the stem and
twig biomasses.

3.3. Mechanochemical Pre-Treatment for the Improvement of Digestibility

In animal nutrition, lignin cannot be readily fermented by rumen microbes. The
solution to this was the use of mechanochemical processing. The mechanochemical treat-
ment disrupts the cell wall of the plant, thereby facilitating the digestibility of valuable
components. The digestibility results of SBT stems after CT separation before and after
mechanochemical processing are shown in 3.7.

3.4. The Anti-Microbial Properties of the Residual Fraction after CT Separation

The residual fraction after CT separation contained serotonin, low-molecular-weight
polyphenolic compounds (quinic acid, catechin, etc.), and their glycosides [19]. In this
study, this residual fraction’s antimicrobial activity was evaluated against Gram-positive
and Gram-negative bacteria as well as pathogenic fungi. The lowest MIC/MBC values
for the fraction were the following: 0.78/0.78 mg/mL against E. coli, 1.56/3.13 mg/mL
against P. aeruginosa, 1.56/>50 mg/mL against B. cereus, and 0.78/1.56 mg/mL against
S. aureus. The lowest MIC/MFC against C. albicans was 12.50/>50 mg/mL. This showed that
enriching the biomass with the above-mentioned low-molecular-weight components and
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returning them to the biomass is a way to create feed additives with special antimicrobial
target properties (Figure 5).
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3.5. Macro-Nutrients and Vitamins in SBT Biomass

The physiological and functional processes of an animal are influenced not only by
organic matter but also by the inorganic components in the feed additive. The results of the
analyses are shown below in Table 1.

Table 1. Contents of macronutrients and heavy metals in SBT biomass.

Macronutrients and
Heavy Metals * MB/LV MB/ST BL/LV BL/ST TAT/LV TAT/ST

P, mg/100 g DM 225 ± 22 220 ± 22 210 ± 21 199 ± 20 212 ± 18 217 ± 26

K, mg/100 g DM 1376 ± 113 1109 ± 107 1209 ± 104 1037 ± 56 1216 ± 114 1119 ± 108

Na, mg/100 g DM 1.72 ± 0.40 22.5 ± 5.2 2.25 ± 0.52 7.83 ± 1.80 1.88 ± 0.36 11.4 ± 3.5

Ca, mg/100 g DM 989 ± 237 281 ± 67 856 ± 205 332 ± 80 917 ± 162 306 ± 46

Cd **, mg/kg DM 0.011 ± 0.003 0.027 ± 0.006 0.011 ± 0.003 0.011 ± 0.002 0.014 ± 0.002 0.018 ± 0.004

Hg **, mg/kg DM 0.0069± 0.0012 0.0031 ± 0.0006 0.0067± 0.0012 0.0022 ± 0.0004 0.0058 ± 0.0004 0.0028± 0.0005

Pb **, mg/kg DM 0.086 ± 0.0022 0.086 ± 0.0022 0.10 ± 0.030 0.037 ± 0.010 0.0042 ± 0.0021 0.073 ± 0.0016

** Does not exceed the permitted maximum: Cd—1 mg/kg DM; Hg—2 mg/kg DM; Pb—10 mg/kg DM (the
values in Regulation No. 1275/2013). * The results are shown as mean ± CI at α = 0.05.

Determination of the content of heavy metals in the feed is necessary since heavy
metals have toxic effects on animal health. The analysis showed that heavy metal content
did not exceed the permissible norms mentioned in the Commission Regulation (EU)
No. 1275/2013 [68] (Table 1).

It was shown that SBT biomass contains fat-soluble and water-soluble vitamins. Vita-
min C content was much higher in the stems than it was in the roots and leaves. The leaves
of all three SBT cultivars are richer in vitamins E and C. The A vitamin was not found in
the SBT stems and roots (n.f.) (Table 2).
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Table 2. Contents of vitamins in SBT biomass.

Samples * Vitamin C, mg/100 g DM‘ Vitamin E (α-tocopherol),
mg/100 g DM Vitamin A (Retinol), mg/100 g DM

MB/LV 15.6 ± 4.4 30.9 ± 4.3 1.29 ± 0.02

MB/ST 178.0 ± 50.0 17.3 ± 2.4 n.f.

BL/LV 12.0 ± 3.0 44.3 ± 6.2 1.14 ± 0.03

BL/ST 9.2 ± 3.6 14.7 ± 2.1 n.f

TAT/LV 13.3 ± 3.6 42.6 ± 2.2 0.86 ± 0.07

TAT/ST 8.0 ± 3.0 16.2 ± 2.6 n.f.

TM/R n.d. n.d. n.f.

OT/R n.d. n.d. n.f.

TAT—Tatiana; BL—Botanicheskaya Lubitelskaya; MB—Maria Bruvele; OT—Otto; TM—Tarmo; ST—stem;
LV—leaves; R—roots. * The results are shown as mean ± CI at α = 0.05.

Moreover, it has been reported that SBT leaves contain thirteen different amino acids,
and wood and bark contain seventeen amino acids [69].

3.6. Main Compounds in SBT Biomass and Their Role in Rumen Digestion

In a complete diet, the amount of crude fiber, protein, and crude fat is of great im-
portance. The total protein content in the dry SBT biomass samples ranged from 18% to
24%/DM (Figure 6).
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Figure 6. Percentage of total protein, crude fiber, and crude fat in dry SBT biomass (TAT—Tatiana;
BL—Botanicheskaya Lubitelskaya; MB—Maria Bruvele; OT—Otto; TM—Tarmo; ST—stem;
LV—leaves; R—roots).

The highest content of total protein was in SBT stems ~23%/DM, followed by leaves
(18.4–19.4%/DM) and roots (17.5–20.7%/DM).

The content of total fat in SBT biomass was as follows: stems (0.7–1.2%/DM), leaves
(2.8–3.6%/DM), and roots (0.7–0.8%/DM). Dairy cows and sheep usually have a pasture-
based diet with a low fat content of 2–6% on a DM basis. However, the energy content in fat is
more than twice that of carbohydrates, calculated based on weight. Dietary fat contents over
8% can negatively impact rumen function, fiber digestion, and milk production [70]. Thus, it
can be said that the fat content in SBT stems and leaves is optimal for nutritional feed.

The crude fiber content in the biomass was 18–27%/DM. Crude fiber is usually indi-
gestible or barely digestible, but it stimulates the production of important gut bacteria. With
a deficiency of crude fiber in the diets of cows, an upset of pre-gastric digestion occurs, and
the productivity of milk production deteriorates [71]. The highest content of crude fiber in
biomass was in SBT roots (33.2–33.6%/DM), followed by stems (26.2–27.1%/DM) and leaves
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(18.1–19.1%/DM). Since the crude fiber concentration of SBT roots was ~2 times higher than
in leaves, roots could be used for the production of fiber-containing feed additives.

3.7. Determination of the in vitro Gas Production and Digestibility of SBT Biomass

For the evaluation of the feed, methods of measuring digestion by in vitro techniques
are ethically preferable, less expensive, and faster than in vivo methods [72]. In the in vitro
released gas measurements, the amount of gas that arises from the fermentation process is
measured. The high potential of a feed’s nutritional and biological value is realized through
proper digestion.

The testing was performed on samples from the MB cultivar because it shows better
overall composition of the main nutritive compounds. According to in vitro test data, the
extract showed the greatest digestibility after the separation of CT. The leaves have a much
higher digestibility than the stems. The stems after mechanochemical treatment had a
2.2 times greater digestibility in comparison to the stems before treatment (Table 3).

Table 3. In vitro true digestibility (IVTD) of SBT biomass samples.

Sample * GP24, mL/g DM GP48, mL/g DM IVTD, %/DM

MB/LV 59.97 ± 1.94 71.76 ± 1.61 82.60 ± 4.80

MB/ST/MT 72.38 ± 3.46 83.18 ± 2.21 39.12 ± 6.06

MB/ST 53.99 ± 8.19 65.33 ± 5.56 18.11 ± 4.61

MB/LV: MB/ST/MT (w/w; 1:1) 76.29 ± 5.73 84.65 ± 7.18 58.11 ± 5.05

MB/LV: MB/ST (w/w; 1:1) 76.73 ± 5.51 81.93 ± 8.97 49.83 ± 5.16

MB residual fraction after CT separation 134.58 ± 3.94 141.51 ± 4.10 98.69 ± 4.44

ST—stems after CT separation; LV—leaves; R—roots; MB/ST/MT—mechanochemically treated Maria Bruvele
stems after CT separation; GP24—gas pressure of 24 h incubated DM; GP48—gas pressure of 24 h incubated DM;
IVTD—in vitro true digestibility of feed. * The results are shown as mean ±CI at α = 0.05.

It can be seen that the digestibility of the leaves is a bit lower than that of the MB
residual fraction after CT separation, but at the same time, the gas emissions are much
lower for the leaves. Therefore, for a reduction in GHG emissions, the SBT leaves should
always be in the composition of the SBT-based animal feed. The leaves can be combined
with other types of biomasses.

The samples from the MB/LV (IVTD = 82.60%) and MB residual fraction after CT
separation (98.69%) showed higher digestibility than canola (64.15%), mustard (73.54%),
and turnip hays (61.2%), obtained under similar conditions [54], as well as Quercus robur L.
oak tree leaves (56.22%), alfalfa hay (71.60), giant fennel hey (70.47%) [73], corn silage
(61.95%), perennial ryegrass (71.67%), and common vetch/oat hay (66.04%) [74].

Under similar conditions to those in our experiments, the GP24 and GP48 in tradition-
ally used cereal grain forages were as follows: barley—289.5 mL/g DM and 405.8 mL/g DM;
wheat—339 mL/g DM and 448.1 mL/g DM; and maize—421.3 mL/g DM and 491.5 mL/g
DM, for 24 h and 48 h, respectively. Meanwhile, in the SBT-based samples, the GP for both
24 and 48 h of incubation was several times lower, with only the MB residual fraction after
CT separation showing a slightly higher production of gasses (see Table 3); however, even
in that case, the gas production was at least two times lower than that of the cereal grain
forages [52].

The in vitro testing showed promising results with regard to the future use of SBT
biomass as animal feed since all samples had low GHG production accompanied by high
digestibility in the leaves and biomass residual fraction after CT separation. Future in vivo
experiments will be needed to prove the possibility of the sustainable use of these biomass
products as a substitute for some of the traditionally used plant feeds. Moreover, the use
of plant biomass with a lower GP will reduce the negative CO2 imprint from livestock
breeding and, thus, will have a positive ecological effect.
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3.8. Caloric Value of SBT Biomass

The contents of carbohydrates, lipids, and proteins are stoichiometrically connected
with the contents of carbon, hydrogen, and nitrogen. Therefore, based on the results of
CHN elemental analyses of biomass, it is possible to calculate a caloric value [75]. The
carbon content in the SBT biomass samples varied from 40.5% to 50.9% (Table 4).

Table 4. Elemental analysis and caloric value data of SBT biomass.

SBT Biomass
C H N Organic Matter

Calorific Value, MJ/kg DM Caloric Value, kcal/g DM

HCV LCV HCV LCV

%/DM; CI ≤ 0.2% at α = 0.05 CI ≤ 0.03% at α = 0.05

MB/ST 50.6 5.6 3.8 97.2 20.47 19.34 4.89 4.62

BL/ST 49.9 5.6 3.7 98.1 20.21 19.07 4.83 4.55

TAT/ST 50.9 5.5 3.6 97.6 20.52 19.41 4.90 4.64

MB/LV 49.1 5.9 2.7 94.8 19.79 18.67 4.73 4.46

BL/LV 49.3 5.8 3.1 96.2 19.90 18.80 4.75 4.49

TAT/LV 49.5 5.9 3.0 94.8 20.02 18.89 4.78 4.51

TM/R 46.5 4.8 3.3 95.5 18.63 17.51 4.45 4.18

OT/R 40.5 5.0 2.8 96.0 16.60 15.48 3.96 3.70

TAT—Tatiana; BL—Botanicheskaya Lubitelskaya; MB—Maria Bruvele; OT—Otto; TM—Tarmo; ST—stem;
LV—leaves; R—roots.

The calorific values of the plant samples were all in the range of 16.6 MJ/kg to
20.52 MJ/kg. The data confirmed that the higher the carbon content, the higher the caloric
value, for all the SBT samples. Considering that 1 MJ is 238.85 kcal, the caloric value of the
studied biomass was in the range of 4–5 kcal/g DM. The relationship between the carbon
content and caloric value with a correlation coefficient of 0.99 is shown in Figure 7.
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Figure 7. Correlations between C (on the (left)) and N (on the (right)) element content and caloric
value (HCV and LCV).

It can be seen that the N content in the biomass samples does not correlate well with
the caloric values of the feed.

3.9. Granulation of SBT Biomass Samples

The granulation of biomass is an effective method for preserving stable quality indica-
tors during the storage of feed and for the improvement of technological characteristics.
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MB stems after MT and the separation of CTs and leaves were granulated as described in
Section 2.9. Granulation with the roots added (5% of total biomass, correspondingly) was
tested to improve the quality of the granules (Figure 8).
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Figure 8. Feed pellets: (A)—MB/LV: MB/ST/MT (1:1, w/w) + 5% TM/R; (B)—MB/LV;
(C)—MB/ST/MT.

The characteristics of the obtained pellets are shown in Table 5. In the presence of roots,
the biomass became stickier, the durability of the pellets showed a tendency to improve
(although insignificantly), and the amount of fines in the pellets was diminished. The
roots were also provided to intercalate a sweet taste to the feed. The disintegration of the
granules in water was evaluated visually. The time of swelling for the granules made of
100% stems or leaves was 30–60 min.

Table 5. The characteristics of feed granules obtained on the basis of SBT biomass.

Samples Pellets
Durability, %

Pellets
Moisture, %

Bulk
Density, kg/m3

Average
Length, mm

MB/ST/MT 96.9 5.8 714.8 12

MB/LV 97.7 5.4 715.7 12

MB/LV: MB/ST/MT (1:1, w/w) 97.2 5.5 714.2 12

MB/LV: MB/ST/MT (1:1, w/w) + 5% TM/R 98.1 5.6 714.8 8

MB—Maria Bruvele; TM—Tarmo; ST—stem; LV—leaves; R—roots.

The twigs of BL, MB, and TAT, after CT separation, were granulated to obtain fuel
pellets. The HHVs of the pellets were 19.8–20.5 MJ/kg (LHV: 18.5–19.6 MJ/kg); durability:
96.8–97.2%; bulk density: 713–715 kg/m3; ash content: 3.5–3.9%; and the average length of
pellets: 12 mm. According to the specifications of the EN ISO 17225 standard [76], the twigs
after the separation of CTs can be used for the production of granulated fuel for district
heating and power stations. Adding some amount of sawdust would help to diminish the
ash content to the level of less than 2%, as required for pellets for non-industrial applications
(ISO 17225-2 standard, class B). This study confirmed that the residue of twigs after the
isolation of CTs can be used as a granular fuel.

4. Conclusions

This study confirmed that SBT agro-waste biomass, after the separation of condensed
tannins, could be a unique and valuable raw material for ruminant feed and feed additive
production. Agro-waste biomass, as a side-product of the SBT berry industry, demands no
additional agricultural land for the production of the animal feed that supports sustainable
agriculture. The high amount of protein, wood fiber, macronutrients, and vitamins in SBT
plant material can provide livestock with alternative feed options when other sources of feed
are limited. Feed on an SBT basis can also be valuable for animals during winter, and dry
seasons, or serve as a supplement to low-protein forage. The anti-microbial properties of the
residual fraction after CT separation are useful for particular animal health conditions and for
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safe feed storage. The twig fraction, after the separation of CT, is suitable for the production
of pellets for district heating and power stations. SBT biomass utilization for animal feed
additives and solid fuel allows the creation of a scheme for sustainable SBT berry production,
where each target product residual fraction has an added-value application.
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