13 research outputs found

    Global sinusoidal seasonality in precipitation isotopes

    No full text
    Abstract Quantifying seasonal variations in precipitation δ²H and δ¹⁸O is important for many stable isotope applications, including inferring plant water sources and streamflow ages. Our objective is to develop a data product that concisely quantifies the seasonality of stable isotope ratios in precipitation. We fit sine curves defined by amplitude, phase, and offset parameters to quantify annual precipitation isotope cycles at 653 meteorological stations on all seven continents. At most of these stations, including in tropical and subtropical regions, sine curves can represent the seasonal cycles in precipitation isotopes. Additionally, the amplitude, phase, and offset parameters of these sine curves correlate with site climatic and geographic characteristics. Multiple linear regression models based on these site characteristics capture most of the global variation in precipitation isotope amplitudes and offsets; while phase values were not well predicted by regression models globally, they were captured by zonal (0–30° and 30–90°) regressions, which were then used to produce global maps. These global maps of sinusoidal seasonality in precipitation isotopes based on regression models were adjusted for the residual spatial variations that were not captured by the regression models. The resulting mean prediction errors were 0.49 ‰ for δ¹⁸O amplitude, 0.73 ‰ for δ¹⁸O offset (and 4.0 ‰ and 7.4 ‰ for δ²H amplitude and offset), 8 d for phase values at latitudes outside of 30°, and 20 d for phase values at latitudes inside of 30°. We make the gridded global maps of precipitation δ²H and δ¹⁸O seasonality publicly available. We also make tabulated site data and fitted sine curve parameters available to support the development of regionally calibrated models, which will often be more accurate than our global model for regionally specific studies

    Global aquifers dominated by fossil groundwaters but wells vulnerable to modern contamination

    Get PDF
    The vulnerability of groundwater to contamination is closely related to its age. Groundwaters that infiltrated prior to the Holocene have been documented in many aquifers and are widely assumed to be unaffected by modern contamination. However, the global prevalence of these ‘fossil’groundwaters and their vulnerability to modern-era pollutants remain unclear. Here we analyse groundwater carbon isotope data (12C, 13C, 14C) from 6,455 wells around the globe. We show that fossil groundwaters comprise a large share (42–85%) of total aquifer storage in the upper 1 km of the crust, and the majority of waters pumped from wells deeper than 250 m. However, half of the wells in our study that are dominated by fossil groundwater also contain detectable levels of tritium, indicating the presence of much younger, decadal-age waters and suggesting that contemporary contaminants may be able to reach deep wells that tap fossil aquifers. We conclude that water quality risk should be considered along with sustainable use when managing fossil groundwater resources

    Environmental risks and opportunities of orphaned oil and gas wells in the United States

    No full text
    Hundreds of thousands of documented and undocumented orphaned oil and gas wells exist in the United States (U.S.). These wells have the potential to contaminate water supplies, degrade ecosystems, and emit methane and other air pollutants. Thus, orphaned wells present risks to climate stability and to environmental and human health, which can be reduced by plugging. To quantify environmental risks and opportunities of well plugging at the national level, we analyze data on 81 857 documented orphaned wells across the U.S. We find that >\gt 4.6 million people live within 1 km of a documented orphaned well. 35% of the documented orphaned wells are located within 1 km of a domestic groundwater well, yet only 8% of the wells have groundwater quality data within a 1 km radius. Methane emissions from the documented orphaned wells represent approximately 3%–6% of total U.S. methane emissions from abandoned oil and gas wells, but this estimate is based on measurements at <\lt 0.03% of U.S. abandoned wells. 91% of the documented orphaned wells overlie formations favorable for geologic storage of carbon dioxide and hydrogen, meaning that orphaned well plugging can reduce leakage risks from future storage projects. Finally, we estimate plugging costs for documented orphaned wells to exceed the $4.7 billion federal funding by 30%–80%, emphasizing the importance of prioritizing federal spending on wells with large remediation benefits. Overall, environmental monitoring data are not extensive enough to quantify risks, especially those related to air and water quality and human health. Plugging orphaned wells can provide opportunities for geologic storage of carbon dioxide and hydrogen and geothermal energy development, thereby facilitating efforts to transition to net-zero energy systems. Our analysis on environmental risks and opportunities of orphaned wells provides a framework that can be used to manage the millions of documented and undocumented orphaned wells in the U.S. and abroad

    Irrigation in the Earth system

    No full text
    International audienceIrrigation accounts for ~70% of global freshwater withdrawals and ~90% of consumptive water use, driving myriad Earth system impacts. In this Review, we summarize how irrigation currently impacts key components of the Earth system. Estimates suggest that more than 3.6 million km2 of currently irrigated land, with hot spots in the intensively cultivated US High Plains, California Central Valley, Indo-Gangetic Basin and northern China. Process-based models estimate that ~2,700 ± 540 km3 irrigation water is withdrawn globally each year, broadly consistent with country-reported values despite these estimates embedding substantial uncertainties. Expansive irrigation has modified surface energy balance and biogeochemical cycling. A shift from sensible to latent heat fluxes, and resulting land-atmosphere feedbacks, generally reduce regional growing season surface temperatures by ~1-3 °C. Irrigation can ameliorate temperature extremes in some regions, but conversely exacerbates moist heat stress. Modelled precipitation responses are more varied, with some intensive cropping regions exhibiting suppressed local precipitation but enhanced precipitation downstream owing to atmospheric circulation interactions. Additionally, irrigation could enhance cropland carbon uptake; however, it can also contribute to elevated methane fluxes in rice systems and mobilize nitrogen loading to groundwater. Cross-disciplinary, integrative research efforts can help advance understanding of these irrigation-Earth system interactions, and identify and reduce uncertainties, biases and limitations
    corecore