677 research outputs found

    Modeling the effects of p-modulation doping in InAs quantum dot devices

    Get PDF
    a modeling routine has been developed to quantify the effects of p-modulation doping in the waveguide core region of InAs quantum dot (QD) devices. Utilizing one dimensional approximations, simulated outputs of reverse and forward devices are simulated providing insight into absorption and gain properties

    QCSE and carrier blocking in P-modulation doped InAs/InGaAs quantum dots

    Get PDF
    The quantum confined Stark effect in InAs/InGaAs QDs using an undoped and p-modulation doped active region was investigated. Doping potentially offers more than a 3x increase in figure of merit modulator performance up to 100Ā°C

    1.3-Ī¼m InAs Quantum Dot Lasers with P-type modulation and direct N-type co-doping

    Get PDF
    O-band quantum dot lasers with co-doping reduce threshold current density relative to the undoped case, for 1mm long uncoated lasers from 245Acm-2 to 132Acm-2 at 27Ā°C and 731Acm-2 to 312Acm-2 at 97Ā°C. Improvements are also significant compared to lasers employing any one doping strategy

    Co-doped 1.3Ī¼m InAs Quantum Dot Lasers with high gain and low threshold current

    Get PDF
    The mechanism by which co-doping reduces threshold current in O-band Quantum dot lasers is examined, with n-type direct doping of the dots reducing threshold current and p-type modulation doping improving the temperature dependence of threshold current density, relative to undoped samples

    Si-based 1.3 Ī¼m InAs/GaAs QD Lasers

    Get PDF
    The effects of implementing Ge and Si buffer layers on the performance of Si-based InAs/GaAs quantum dot lasers have been investigated in this paper. The laser performance has been improved significantly by utilising group-IV buffer layers

    Ultrasound-evoked immediate early gene expression in the brainstem of the Chinese torrent frog, Odorrana tormota

    Get PDF
    The concave-eared torrent frog, Odorrana tormota, has evolved the extraordinary ability to communicate ultrasonically (i.e., using frequenciesĀ >Ā 20Ā kHz), and electrophysiological experiments have demonstrated that neurons in the frogā€™s midbrain (torus semicircularis) respond to frequencies up to 34Ā kHz. However, at this time, it is unclear which region(s) of the torus and what other brainstem nuclei are involved in the detection of ultrasound. To gain insight into the anatomical substrate of ultrasound detection, we mapped expression of the activity-dependent gene, egr-1, in the brain in response to a full-spectrum mating call, a filtered, ultrasound-only call, and no sound. We found that the ultrasound-only call elicited egr-1 expression in the superior olivary and principal nucleus of the torus semicircularis. In sampled areas of the principal nucleus, the ultrasound-only call tended to evoke higher egr-1 expression than the full-spectrum call and, in the center of the nucleus, induced significantly higher egr-1 levels than the no-sound control. In the superior olivary nucleus, the full-spectrum and ultrasound-only calls evoked similar levels of expression that were significantly greater than the control, and egr-1 induction in the laminar nucleus showed no evidence of acoustic modulation. These data suggest that the sampled areas of the principal nucleus are among the regions sensitive to ultrasound in this species

    Increasing Maximum Gain in InAs Quantum Dot Lasers on GaAs and Si

    Get PDF
    InAs quantum-dot (QD) lasers emitting at 1300nm with nominally undoped and modulated p-type doping are studied. Modal-gain measurements indicate a higher gain can be achieved from the ground-state for a given Fermi-level separation with p-doping and a reduced temperature-dependence of threshold current for short-cavity lasers

    Disease-associated pathophysiologic structures in pediatric rheumatic diseases show characteristics of scale-free networks seen in physiologic systems: implications for pathogenesis and treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While standard reductionist approaches have provided some insights into specific gene polymorphisms and molecular pathways involved in disease pathogenesis, our understanding of complex traits such as atherosclerosis or type 2 diabetes remains incomplete. Gene expression profiling provides an unprecedented opportunity to understand complex human diseases by providing a global view of the multiple interactions across the genome that are likely to contribute to disease pathogenesis. Thus, the goal of gene expression profiling is not to generate lists of differentially expressed genes, but to identify the physiologic or pathogenic processes and structures represented in the expression profile.</p> <p>Methods</p> <p>RNA was separately extracted from peripheral blood neutrophils and mononuclear leukocytes, labeled, and hybridized to genome level microarrays to generate expression profiles of children with polyarticular juvenile idiopathic arthritis, juvenile dermatomyositis relative to childhood controls. Statistically significantly differentially expressed genes were identified from samples of each disease relative to controls. Functional network analysis identified interactions between products of these differentially expressed genes.</p> <p>Results</p> <p><it>In silico </it>models of both diseases demonstrated similar features with properties of scale-free networks previously described in physiologic systems. These networks were observable in both cells of the innate immune system (neutrophils) and cells of the adaptive immune system (peripheral blood mononuclear cells).</p> <p>Conclusion</p> <p>Genome-level transcriptional profiling from childhood onset rheumatic diseases suggested complex interactions in two arms of the immune system in both diseases. The disease associated networks showed scale-free network patterns similar to those reported in normal physiology. We postulate that these features have important implications for therapy as such networks are relatively resistant to perturbation.</p

    A model of professional self-identity formation in student doctors and dentists: a mixed method study.

    Get PDF
    BACKGROUND: Professional self-identity [PSI] can be defined as the degree to which an individual identifies with his or her professional group. Several authors have called for a better understanding of the processes by which healthcare students develop their professional identities, and suggested helpful theoretical frameworks borrowed from the social science and psychology literature. However to our knowledge, there has been little empirical work examining these processes in actual healthcare students, and we are aware of no data driven description of PSI development in healthcare students. Here, we report a data driven model of PSI formation in healthcare students. METHODS: We interviewed 17 student doctors and dentists who had indicated, on a tracking questionnaire, the most substantial changes in their PSI. We analysed their perceptions of the experiences that had influenced their PSI, to develop a descriptive model. Both the primary coder and the secondary coder considered the data without reference to the existing literature; i.e. we used a bottom up approach rather than a top down approach. RESULTS: The results indicate that two overlapping frames of reference affect PSI formation: the students' self-perception and their perception of the professional role. They are 'learning' both; neither is static. Underpinning those two learning processes, the following key mechanisms operated: [1] When students are allowed to participate in the professional role they learn by trying out their knowledge and skill in the real world and finding out to what extent they work, and by trying to visualise themselves in the role. [2] When others acknowledge students as quasi-professionals they experience transference and may respond with counter-transference by changing to meet expectations or fulfil a prototype. [3] Students may also dry-run their professional role (i.e., independent practice of professional activities) in a safe setting when invited. CONCLUSIONS: Students' experiences, and their perceptions of those experiences, can be evaluated through a simple model that describes and organises the influences and mechanisms affecting PSI. This empirical model is discussed in the light of prevalent frameworks from the social science and psychology literature
    • ā€¦
    corecore