5 research outputs found

    Risk of brain tumours in relation to estimated RF dose from mobile phones: results from five Interphone countries

    Get PDF
    OBJECTIVES: The objective of this study was to examine the associations of brain tumours with radio frequency (RF) fields from mobile phones. METHODS: Patients with brain tumour from the Australian, Canadian, French, Israeli and New Zealand components of the Interphone Study, whose tumours were localised by neuroradiologists, were analysed. Controls were matched on age, sex and region and allocated the 'tumour location' of their matched case. Analyses included 553 glioma and 676 meningioma cases and 1762 and 1911 controls, respectively. RF dose was estimated as total cumulative specific energy (TCSE; J/kg) absorbed at the tumour's estimated centre taking into account multiple RF exposure determinants. RESULTS: ORs with ever having been a regular mobile phone user were 0.93 (95% CI 0.73 to 1.18) for glioma and 0.80 (95% CI 0.66 to 0.96) for meningioma. ORs for glioma were below 1 in the first four quintiles of TCSE but above 1 in the highest quintile, 1.35 (95% CI 0.96 to 1.90). The OR increased with increasing TCSE 7+ years before diagnosis (p-trend 0.01; OR 1.91, 95% CI 1.05 to 3.47 in the highest quintile). A complementary analysis in which 44 glioma and 135 meningioma cases in the most exposed area of the brain were compared with gliomas and meningiomas located elsewhere in the brain showed increased ORs for tumours in the most exposed part of the brain in those with 10+ years of mobile phone use (OR 2.80, 95% CI 1.13 to 6.94 for glioma). Patterns for meningioma were similar, but ORs were lower, many below 1.0. CONCLUSIONS: There were suggestions of an increased risk of glioma in long-term mobile phone users with high RF exposure and of similar, but apparently much smaller, increases in meningioma risk. The uncertainty of these results requires that they be replicated before a causal interpretation can be made

    Acoustic neuroma risk in relation to mobile telephone use: Results of the INTERPHONE international case-control study

    No full text
    Cardis E, Deltour I, Vrijheid M, et al. Acoustic neuroma risk in relation to mobile telephone use: Results of the INTERPHONE international case-control study. Cancer Epidemiology. 2011;35(5):453-464.Background: The rapid increase in mobile telephone use has generated concern about possible health risks of radiofrequency electromagnetic fields from these devices. Methods: A case-control study of 1105 patients with newly diagnosed acoustic neuroma (vestibular schwannoma) and 2145 controls was conducted in 13 countries using a common protocol. Past mobile phone use was assessed by personal interview. In the primary analysis, exposure time was censored at one year before the reference date (date of diagnosis for cases and date of diagnosis of the matched case for controls); analyses censoring exposure at five years before the reference date were also done to allow for a possible longer latent period. Results: The odds ratio (OR) of acoustic neuroma with ever having been a regular mobile phone user was 0.85 (95% confidence interval 0.69-1.04). The OR for >= 10 years after first regular mobile phone use was 0.76 (0.52-1.11). There was no trend of increasing ORs with increasing cumulative call time or cumulative number of calls, with the lowest OR (0.48 (0.30-0.78)) observed in the 9th decile of cumulative call time. In the 10th decile (>= 1640 h) of cumulative call time, the OR was 1.32 (0.88-1.97); there were, however, implausible values of reported use in those with >= 1640 h of accumulated mobile phone use. With censoring at 5 years before the reference date the OR for >= 10 years after first regular mobile phone use was 0.83 (0.58-1.19) and for >= 1640 h of cumulative call time it was 2.79(1.51-5.16). but again with no trend in the lower nine deciles and with the lowest OR in the 9th decile. In general, ORs were not greater in subjects who reported usual phone use on the same side of the head as their tumour than in those who reported it on the opposite side, but it was greater in those in the 10th decile of cumulative hours of use. Conclusions: There was no increase in risk of acoustic neuroma with ever regular use of a mobile phone or for users who began regular use 10 years or more before the reference date. Elevated odds ratios observed at the highest level of cumulative call time could be due to chance, reporting bias or a causal effect. As acoustic neuroma is usually a slowly growing tumour, the interval between introduction of mobile phones and occurrence of the tumour might have been too short to observe an effect, if there is one. (C) 2011 Elsevier Ltd. All rights reserved

    Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study

    No full text
    Methods An interview-based case-control study with 2708 glioma and 2409 meningioma cases and matched controls was conducted in 13 countries using a common protocol. Results A reduced odds ratio (OR) related to ever having been a regular mobile phone user was seen for glioma [OR 0.81; 95% confidence interval (CI) 0.70-0.94] and meningioma (OR 0.79; 95% CI 0.68-0.91), possibly reflecting participation bias or other methodological limitations. No elevated OR was observed >= 10 years after first phone use (glioma: OR 0.98; 95% CI 0.76-1.26; meningioma: OR 0.83; 95% CI 0.61-1.14). ORs were = 1640 h, the OR was 1.40 (95% CI 1.03-1.89) for glioma, and 1.15 (95% CI 0.81-1.62) for meningioma; but there are implausible values of reported use in this group. ORs for glioma tended to be greater in the temporal lobe than in other lobes of the brain, but the CIs around the lobe-specific estimates were wide. ORs for glioma tended to be greater in subjects who reported usual phone use on the same side of the head as their tumour than on the opposite side. Conclusions Overall, no increase in risk of glioma or meningioma was observed with use of mobile phones. There were suggestions of an increased risk of glioma at the highest exposure levels, but biases and error prevent a causal interpretation. The possible effects of long-term heavy use of mobile phones require further investigation

    Exposure to loud noise and risk of vestibular schwannoma: results from the INTERPHONE international case-control study

    No full text
    Deltour I, Schlehofer B, Massardier-Pilonchery A, et al. Exposure to loud noise and risk of vestibular schwannoma: results from the INTERPHONE international case-control study. SCANDINAVIAN JOURNAL OF WORK ENVIRONMENT & HEALTH. 2019;45(2):183-193.Objective Studies of loud noise exposure and vestibular schwannomas (VS) have shown conflicting results. The population-based INTERPHONE case-control study was conducted in 13 countries during 2000-2004. In this paper, we report the results of analyses on the association between VS and self-reported loud noise exposure. Methods Self-reported noise exposure was analyzed in 1024 VS cases and 1984 matched controls. Life-long noise exposure was estimated through detailed questions. Odds ratios (OR) and 95% confidence intervals (CI) were estimated using adjusted conditional logistic regression for matched sets. Results The OR for total work and leisure noise exposure was 1.6 (95% CI 1.4-1.9). OR were 1.5 (95% CI 1.3-1.9) for only occupational noise, 1.9 (95% CI 1.4-2.6) for only leisure noise and 1.7 (95% CI 1.2-2.2) for exposure in both contexts. OR increased slightly with increasing lag-time. For occupational exposures, duration, time since exposure start and a metric combining lifetime duration and weekly exposure showed significant trends of increasing risk with increasing exposure. OR did not differ markedly by source or other characteristics of noise. Conclusion The consistent associations seen are likely to reflect either recall bias or a causal association, or potentially indicate a mixture of both
    corecore