241 research outputs found

    White matter development in infants at risk for schizophrenia

    Get PDF
    Background: Schizophrenia is considered a neurodevelopmental disorder with a pathophysiology that likely begins long before the onset of clinical symptoms. White matter abnormalities have been observed in schizophrenia and we hypothesized that the first 2 years of life is a period in which white matter abnormalities associated with schizophrenia risk may emerge. Methods: 38 infants at high risk for schizophrenia and 202 healthy controls underwent diffusion tensor MRIs after birth and at 1 and 2 years of age. Quantitative tractography was used to determine diffusion properties (fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD)) of 18 white matter tracts and a general linear model was used to analyze group differences at each age. Results: Adjusting gestational age at birth, postnatal age at MRI, gender, MRI scanner type, and maternal education, neonates at high risk had significantly lower FA (p = 0.02) and AD (p = 0.03) in the superior segment of the left cingulate, and higher RD in the hippocampal segment of the left cingulate (p = 0.04). High risk one year olds had significantly lower FA (p < 0.01) and AD (p = 0.02) in the hippocampal segment of the left cingulate. High risk two year olds had significantly lower FA in the left prefrontal cortico-thalamic tract (p = 0.04) and higher RD in the right uncinate fasciculus (p = 0.04). None of the tract differences remained significant after correction for multiple comparisons. Conclusions: There is evidence of abnormal white matter development in young children at risk for schizophrenia, especially in the hippocampal segment of left cingulum. These results support the neurodevelopmental theory of schizophrenia and indicate that impaired white matter may be present in early childhood

    Deficits in adult prefrontal cortex neurons and behavior following early post-natal NMDA antagonist treatment

    Get PDF
    The prefrontal cortex (PFC) is associated with higher cognitive functions including attention and working memory and has been implicated in the regulation of impulsivity as well as the pathology of complex mental illnesses. N-methyl D-aspartate (NMDA) antagonist treatment with dizocilpine induces cell death which is greatest in the frontal cortex on postnatal day seven (P7), however the long-term structural and behavioral effects of this treatment are unknown. This study investigates both the acute neurotoxicity of P7 dizocilpine and the persistent effects of this treatment on pyramidal cells and parvalbumin interneurons in the adult PFC, a brain region involved in the regulation of impulsivity

    microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder

    Get PDF
    BACKGROUND: microRNAs (miRNAs) are small, noncoding RNA molecules that are now thought to regulate the expression of many mRNAs. They have been implicated in the etiology of a variety of complex diseases, including Tourette's syndrome, Fragile × syndrome, and several types of cancer. RESULTS: We hypothesized that schizophrenia might be associated with altered miRNA profiles. To investigate this possibility we compared the expression of 264 human miRNAs from postmortem prefrontal cortex tissue of individuals with schizophrenia (n = 13) or schizoaffective disorder (n = 2) to tissue of 21 psychiatrically unaffected individuals using a custom miRNA microarray. Allowing a 5% false discovery rate, we found that 16 miRNAs were differentially expressed in prefrontal cortex of patient subjects, with 15 expressed at lower levels (fold change 0.63 to 0.89) and 1 at a higher level (fold change 1.77) than in the psychiatrically unaffected comparison subjects. The expression levels of 12 selected miRNAs were also determined by quantitative RT-PCR in our lab. For the eight miRNAs distinguished by being expressed at lower microarray levels in schizophrenia samples versus comparison samples, seven were also expressed at lower levels with quantitative RT-PCR. CONCLUSION: This study is the first to find altered miRNA profiles in postmortem prefrontal cortex from schizophrenia patients

    The early stages of schizophrenia: Speculations on pathogenesis, pathophysiology, and therapeutic approaches

    Get PDF
    Schizophrenia is commonly considered a neurodevelopmental disorder that is associated with significant morbidity; however, unlike other neurodevelopmental disorders, the symptoms of schizophrenia often do not manifest for decades. In most patients, the formal onset of schizophrenia is preceded by prodromal symptoms, including positive symptoms, mood symptoms, cognitive symptoms, and social withdrawal. The proximal events that trigger the formal onset of schizophrenia are not clear but may include developmental biological events and environmental interactions or stressors. Treatment with antipsychotic drugs clearly ameliorates psychotic symptoms, and maintenance therapy may prevent the occurrence of relapse. The use of atypical antipsychotic agents may additionally ameliorate the pathophysiology of schizophrenia and prevent disease progression. Moreover, if treated properly early in the course of illness, many patients can experience a significant remission of their symptoms and are capable of a high level of recovery following the initial episode. Because the clinical deterioration that occurs in schizophrenia may actually begin in the prepsychotic phase, early identification and intervention may favorably alter the course and outcome of schizophrenia

    Clozapine-induced agranulocytosis is associated with rare HLA-DQB1 and HLA-B alleles

    Get PDF
    Clozapine is a particularly effective antipsychotic medication but its use is curtailed by the risk of clozapine-induced agranulocytosis/granulocytopenia (CIAG), a severe adverse drug reaction occurring in up to 1% of treated individuals. Identifying genetic risk factors for CIAG could enable safer and more widespread use of clozapine. Here we perform the largest and most comprehensive genetic study of CIAG to date by interrogating 163 cases using genomewide genotyping and whole-exome sequencing. We find that two loci in the major histocompatibility complex are independently associated with CIAG: a single amino acid in HLA-DQB1 (126Q) (P = 4.7 x 10(-14), odds ratio (OR) = 0.19, 95% confidence interval (CI) = 0.12-0.29) and an amino acid change in the extracellular binding pocket of HLA-B (158T) (P = 6.4 x 10(-10), OR = 3.3, 95% CI = 2.3-4.9). These associations dovetail with the roles of these genes in immunogenetic phenotypes and adverse drug responses for other medications, and provide insight into the pathophysiology of CIAG

    Pro-apoptotic Par-4 and dopamine D2 receptor in temporal cortex in schizophrenia, bipolar disorder and major depression

    Get PDF
    Although the etiology of schizophrenia remains unknown, diverse neuropathological evidence suggests a disorder of synaptic connectivity. Apoptosis is a form of cell death that helps determine synaptic circuitry during neurodevelopment and altered regulation of apoptosis has been implicated in schizophrenia. Prostate apoptosis response-4 (Par-4) is an upstream regulator of apoptosis preferentially localized to synapses. Brain Par-4 levels are upregulated in response to pro-apoptotic stimuli in rodent models and in patients with classic neurodegenerative diseases. Recently, Par-4 was also found to form a complex with the dopamine D2 receptor (D2DR) in competition with the calcium-binding protein calmodulin, implicating Par-4 as an important regulatory component in normal dopamine signaling. Interestingly, mutant mice with disrupted Par-4/D2DR interaction demonstrated depressive-like behaviors, suggesting a potential role for Par-4 in both depression and schizophrenia. In this study, Par-4, D2DR and calmodulin protein levels were measured using semiquantitative Western blotting in postmortem temporal cortex in subjects with schizophrenia, major depression and bipolar disorder. Compared to normal controls, mean Par-4 levels appeared slightly lower in schizophrenia and bipolar disorder. However, in major depression, Par-4 was decreased by 67% compared to normal controls. No differences were found between any groups for calmodulin or for the D2DR 48 kDa band. The D2DR 98 kDa band was lower by 50% in the schizophrenia compared to control groups. Changes in the Par-4/D2DR signaling pathway represent a novel mechanism that may link apoptotic and dopamine signaling pathways in major depression and schizophrenia
    • …
    corecore