8 research outputs found

    Design of natural-rubber panel railroad crossing using finite element method

    Get PDF
    Thailand has a railway system that is available throughout the country, so there are several railroad crossings. These crossings are generally made of concrete or logs with multiple constraints. There are some disadvantages of concrete railroad crossing, such as, crack, noise during car passing over. To overcome these disadvantages, the softer materials should be used instead. Therefore, this research proposes the natural rubber, widely grown throughout Thailand, panel railroad crossing. However, the natural rubber alone is not enough to withstand the harsh condition. Thus, it is necessary to have some addition ingredients that will enhance the natural rubber properties. The material used in this research is a rubber compound between Chloroprene Rubber (CR) 75% and Natural rubber (NR) 25% blend with additives such as carbon black (CB), magnesium oxide (MgO) and sulfur (S8). The objectives of this article were to analyze the deformation of the natural rubber panel railroad crossing and to evaluate its safety factor, defined as the ratio of strain at break and the maximum equivalent strain, using finite element method. In the analysis, the applied loading of the model was obtained from the State Railway of Thailand. The analyzed results reveal that the deflection of rubber panels passes the standard from State Railway of Thailand. Safety factor of external rubber panel is 27.03 and for internal rubber panels are 9.12 and 15.29. The metal pads had elastically deformed and concrete railroad sleeper deformation was very small

    Design of natural-rubber panel railroad crossing using finite element method

    No full text
    Thailand has a railway system that is available throughout the country, so there are several railroad crossings. These crossings are generally made of concrete or logs with multiple constraints. There are some disadvantages of concrete railroad crossing, such as, crack, noise during car passing over. To overcome these disadvantages, the softer materials should be used instead. Therefore, this research proposes the natural rubber, widely grown throughout Thailand, panel railroad crossing. However, the natural rubber alone is not enough to withstand the harsh condition. Thus, it is necessary to have some addition ingredients that will enhance the natural rubber properties. The material used in this research is a rubber compound between Chloroprene Rubber (CR) 75% and Natural rubber (NR) 25% blend with additives such as carbon black (CB), magnesium oxide (MgO) and sulfur (S8). The objectives of this article were to analyze the deformation of the natural rubber panel railroad crossing and to evaluate its safety factor, defined as the ratio of strain at break and the maximum equivalent strain, using finite element method. In the analysis, the applied loading of the model was obtained from the State Railway of Thailand. The analyzed results reveal that the deflection of rubber panels passes the standard from State Railway of Thailand. Safety factor of external rubber panel is 27.03 and for internal rubber panels are 9.12 and 15.29. The metal pads had elastically deformed and concrete railroad sleeper deformation was very small

    Compact Heat Integrated Reactor System of Steam Reformer, Shift Reactor and Combustor for Hydrogen Production from Ethanol

    No full text
    A compact heat integrated reactor system (CHIRS) of a steam reformer, a water gas shift reactor, and a combustor were designed for stationary hydrogen production from ethanol. Different reactor integration concepts were firstly studied using Aspen Plus. The sequential steam reformer and shift reactor (SRSR) was considered as a conventional system. The efficiency of the SRSR could be improved by more than 12% by splitting water addition to the shift reactor (SRSR-WS). Two compact heat integrated reactor systems (CHIRS) were proposed and simulated by using COMSOL Multiphysics software. Although the overall efficiency of the CHIRS was quite a bit lower than the SRSR-WS, the compact systems were properly designed for portable use. CHIRS (I) design, combining the reactors in a radial direction, was large in reactor volume and provided poor temperature control. As a result, the ethanol steam reforming and water gas shift reactions were suppressed, leading to lower hydrogen selectivity. On the other hand, CHIRS (II) design, combining the process in a vertical direction, provided better temperature control. The reactions performed efficiently, resulting in higher hydrogen selectivity. Therefore, the high performance CHIRS (II) design is recommended as a suitable stationary system for hydrogen production from ethanol

    Numerical simulation of porous media combustion for high temperature heat exchanger

    No full text
    The purpose of this work is developing the numerical 1D model of porous media combustion for investigating porous media burner systems. The software is used to solve energy, mass transfer and chemical reaction equation of the combustion. The operating condition and property parameters, which mainly affect the functions and quality of the industrial burner design, such as the inlet velocity of the reactants, the equivalence ratio, the extinction coefficient and the thermal conductivity of porous media, will be investigated and validated with experimental data. For developing the procedure of experiment, three diameter sizes of porous media materials (5 mm, 10 mm, and 15 mm.) were used. As a result, the developed model will be used as a tool to explore temperature distribution of heat exchange to improve thermal performance and overall efficiency system. Moreover, this knowledge can be applied to design porous media burner systems for uniform temperature distribution operation
    corecore