17 research outputs found

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effects of Long-Term Surfing on Bone Health in Mature-Aged Males

    Get PDF
    Low mechanical loading aquatic activities such as swimming and scuba diving have identified decreased bone mineral density (BMD); however, the effects of long-term surfing on bone health remains uninvestigated. This was a cross-sectional observational study with two groups: surfers (n = 11) with 40 years surfing experience and age and gender-matched sedentary controls (n = 10). Data collected included physical activity questionnaires, biomarkers, BMD, bone mineral content and body composition. Surfers demonstrated a significantly (p < 0.05) higher mean BMD in the arms (+18.8%), trunk (+26.1%), ribs (+27.2%), spine (+39.5%), and lumbar spine (+22.8%). Surfers also exhibited a significantly (p < 0.05) higher BMC in the arms, trunk, ribs, spine and pelvis. Surfers also had a significantly higher (p = .046) lean muscle mass in their arms (+16.8%). Our results indicate long-term participation in surfing is beneficial to bone health and maybe an ideal physical activity for middle-aged aquatic enthusiasts

    The host phylogeny determines viral infectivity and replication across Staphylococcus host species.

    No full text
    Virus host shifts, where a virus transmits to and infects a novel host species, are a major source of emerging infectious disease. Genetic similarity between eukaryotic host species has been shown to be an important determinant of the outcome of virus host shifts, but it is unclear if this is the case for prokaryotes where anti-virus defences can be transmitted by horizontal gene transfer and evolve rapidly. Here, we measure the susceptibility of 64 strains of Staphylococcaceae bacteria (48 strains of Staphylococcus aureus and 16 non-S. aureus species spanning 2 genera) to the bacteriophage ISP, which is currently under investigation for use in phage therapy. Using three methods-plaque assays, optical density (OD) assays, and quantitative (q)PCR-we find that the host phylogeny explains a large proportion of the variation in susceptibility to ISP across the host panel. These patterns were consistent in models of only S. aureus strains and models with a single representative from each Staphylococcaceae species, suggesting that these phylogenetic effects are conserved both within and among host species. We find positive correlations between susceptibility assessed using OD and qPCR and variable correlations between plaque assays and either OD or qPCR, suggesting that plaque assays alone may be inadequate to assess host range. Furthermore, we demonstrate that the phylogenetic relationships between bacterial hosts can generally be used to predict the susceptibility of bacterial strains to phage infection when the susceptibility of closely related hosts is known, although this approach produced large prediction errors in multiple strains where phylogeny was uninformative. Together, our results demonstrate the ability of bacterial host evolutionary relatedness to explain differences in susceptibility to phage infection, with implications for the development of ISP both as a phage therapy treatment and as an experimental system for the study of virus host shifts

    Identification and Characterization of Dual Inhibitors of the USP25/ 28 Deubiquitinating Enzyme Subfamily

    Get PDF
    The ubiquitin proteasome system is widely postulated to be a new and important field of drug discovery for the future, with the ubiquitin specific proteases (USPs) representing one of the more attractive target classes within the area. Many USPs have been linked to critical axes for therapeutic intervention, and the finding that USP28 is required for c-Myc stability suggests that USP28 inhibition may represent a novel approach to targeting this so far undruggable oncogene. Here, we describe the discovery of the first reported inhibitors of USP28, which we demonstrate are able to bind to and inhibit USP28, and while displaying a dual activity against the closest homologue USP25, these inhibitors show a high degree of selectivity over other deubiquitinases (DUBs). The utility of these compounds as valuable probes to investigate and further explore cellular DUB biology is highlighted by the demonstration of target engagement against both USP25 and USP28 in cells. Furthermore, we demonstrate that these inhibitors are able to elicit modulation of both the total levels and the half-life of the c-Myc oncoprotein in cells and also induce apoptosis and loss of cell viability in a range of cancer cell lines. We however observed a narrow therapeutic index compared to a panel of tissue-matched normal cell lines. Thus, it is hoped that these probes and data presented herein will further advance our understanding of the biology and tractability of DUBs as potential future therapeutic targets

    Discovery and Optimization of Allosteric Inhibitors of Mutant Isocitrate Dehydrogenase 1 (R132H IDH1) Displaying Activity in Human Acute Myeloid Leukemia Cells

    No full text
    A collaborative high throughput screen of 1.35 million compounds against mutant (R132H) isocitrate dehydrogenase IDH1 led to the identification of a novel series of inhibitors. Elucidation of the bound ligand crystal structure showed that the inhibitors exhibited a novel binding mode in a previously identified allosteric site of IDH1 (R132H). This information guided the optimization of the series yielding submicromolar enzyme inhibitors with promising cellular activity. Encouragingly, one compound from this series was found to induce myeloid differentiation in primary human IDH1 R132H AML cells <i>in vitro</i>

    Development of a Series of Pyrrolopyridone MAT2A Inhibitors

    No full text
    The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ’9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors

    Development of a Series of Pyrrolopyridone MAT2A Inhibitors

    No full text
    The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ’9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors
    corecore