317 research outputs found

    The radial variation of HI velocity dispersions in dwarfs and spirals

    Get PDF
    Gas velocity dispersions provide important diagnostics of the forces counteracting gravity to prevent collapse of the gas. We use the 21 cm line of neutral atomic hydrogen (HI) to study HI velocity dispersion and HI phases as a function of galaxy morphology in 22 galaxies from The HI Nearby Galaxy Survey (THINGS). We stack individual HI velocity profiles and decompose them into broad and narrow Gaussian components. We study the HI velocity dispersion and the HI surface density, as a function of radius. For spirals, the velocity dispersions of the narrow and broad components decline with radius and their radial profiles are well described by an exponential function. For dwarfs, however, the profiles are much flatter. The single Gaussian dispersion profiles are, in general, flatter than those of the narrow and broad components. In most cases, the dispersion profiles in the outer disks do not drop as fast as the star formation profiles, derived in the literature. This indicates the importance of other energy sources in driving HI velocity dispersion in the outer disks. The radial surface density profiles of spirals and dwarfs are similar. The surface density profiles of the narrow component decline more steeply than those of the broad component, but not as steep as what was found previously for the molecular component. As a consequence, the surface density ratio between the narrow and broad components, an estimate of the mass ratio between cold HI and warm HI, tends to decrease with radius. On average, this ratio is lower in dwarfs than in spirals. This lack of a narrow, cold HI component in dwarfs may explain their low star formation activity.Comment: Accepted for publication in The Astronomical Journal, 13 pages, 10 figures, 4 table

    Caltech Faint Field Galaxy Redshift Survey IX: Source detection and photometry in the Hubble Deep Field Region

    Get PDF
    Detection and photometry of sources in the U_n, G, R, and K_s bands in a 9x9 arcmin^2 region of the sky, centered on the Hubble Deep Field, are described. The data permit construction of complete photometric catalogs to roughly U_n=25, G=26, R=25.5 and K_s=20 mag, and significant photometric measurements somewhat fainter. The galaxy number density is 1.3x10^5 deg^{-2} to R=25.0 mag. Galaxy number counts have slopes dlog N/dm=0.42, 0.33, 0.27 and 0.31 in the U_n, G, R and K_s bands, consistent with previous studies and the trend that fainter galaxies are, on average, bluer. Galaxy catalogs selected in the R and K_s bands are presented, containing 3607 and 488 sources, in field areas of 74.8 and 59.4 arcmin^2, to R=25.5 and and K_s=20 mag.Comment: Accepted for publication in ApJS; some tables and slightly nicer figures available at http://www.sns.ias.edu/~hogg/deep

    The Infrared Properties of Hickson Compact Groups

    Get PDF
    Compact groups of galaxies provide a unique environment to study the mechanisms by which star formation occurs amid continuous gravitational encounters. We present 2MASS (JHK), Spitzer IRAC (3.5-8 micron) and MIPS (24 micron) observations of a sample of twelve Hickson Compact Groups (HCGs 2, 7, 16, 19, 22, 31, 42, 48, 59, 61, 62, and 90) that includes a total of 45 galaxies. The near-infrared colors of the sample galaxies are largely consistent with being dominated by slightly reddened normal stellar populations. Galaxies that have the most significant PAH and/or hot dust emission (as inferred from excess 8 micron flux) also tend to have larger amounts of extinction and/or K-band excess and stronger 24 micron emission, all of which suggest ongoing star formation activity. We separate the twelve HCGs in our sample into three types based on the ratio of the group HI mass to dynamical mass. We find evidence that galaxies in the most gas-rich groups tend to be the most actively star forming. Galaxies in the most gas-poor groups tend to be tightly clustered around a narrow range in colors consistent with the integrated light from a normal stellar population. We interpret these trends as indicating that galaxies in gas-rich groups experience star formation and/or nuclear actively until their neutral gas consumed, stripped, or ionized. The galaxies in this sample exhibit a ``gap'' between gas-rich and gas-poor groups in infrared color space that is sparsely populated and not seen in the Spitzer First Look Survey sample. This gap may suggest a rapid evolution of galaxy properties in response to dynamical effects. These results suggest that the global properties of the groups and the local properties of the galaxies are connected.Comment: 34 pages, 26 figures, accepted for publication in AJ, higher quality images available in publicatio

    A Near-Infrared and X-ray Study of W49B: A Wind Cavity Explosion

    Get PDF
    We present near-infrared narrow-band images of the supernova remnant W49B, taken with the WIRC instrument on the Hale 200 inch telescope on Mt. Palomar. The 1.64 micron [Fe II] image reveals a barrel-shaped structure with coaxial rings, which is suggestive of bipolar wind structures surrounding massive stars. The 2.12 micron shocked molecular hydrogen image extends 1.9 pc outside of the [Fe II] emission to the southeast. We also present archival Chandra data, which show an X-ray jet-like structure along the axis of the [Fe II] barrel, and flaring at each end. Fitting single temperature X-ray emission models reveals: an enhancement of heavy elements, with particularly high abundances of hot Fe and Ni, and relatively metal-rich core and jet regions. We interpret these findings as evidence that W49B originated inside a wind-blown bubble (R ~ 5 pc) interior to a dense molecular cloud. This suggests that W49B's progenitor was a supermassive star, that could significantly shape its surrounding environment. We also suggest two interpretations for the jet morphology, abundance variations and molecular hydrogen emission: (1) the explosion may have been jet-driven and interacting with the molecular cavity (i.e. a Gamma-ray burst); or (2) the explosion could have been a traditional supernova, with the jet structure being the result of interactions between the shock and an enriched interstellar cloud.Comment: 9 pages with embedded figures Accepted by the Astrophysical Journa

    Caltech Faint Galaxy Redshift Survey. IX. Source Detection and Photometry in the Hubble Deep Field Region

    Get PDF
    Detection and photometry of sources in the U_n, G, ℛ, and K_s bands in a 9 × 9 arcmin^2 region of the sky, centered on the Hubble Deep Field, are described. The data permit construction of complete photometric catalogs to roughly U_n = 25, G = 26, ℛ = 25.5, K_s = 20 mag and significant photometric measurements somewhat fainter. The galaxy number density is 1.3 × 10^5 deg^(-2) to ℛ = 25.0 mag. Galaxy number counts have slopes d log N/dm = 0.42, 0.33, 0.27, and 0.31 in the U_n, G, ℛ, and K_s bands, consistent with previous studies and the trend that fainter galaxies are, on average, bluer. Galaxy catalogs selected in the ℛ and K_s bands are presented, containing 3607 and 488 sources in field areas of 74.8 and 59.4 arcmin^2, to ℛ = 25.5 and K_s = 20 mag

    Ultraviolet through far-infrared spatially resolved analysis of the recent star formation in M81 (NGC 3031)

    Get PDF
    The recent star formation (SF) in the early-type spiral galaxy M81 is characterized using imaging observations from the far-ultraviolet to the far-infrared. We compare these data with models of the stellar, gas, and dust emission for subgalactic regions. Our results suggest the existence of a diffuse dust emission not directly linked to the recent star formation. We find a radial decrease of the dust temperature and dust mass density, and in the attenuation of the stellar light. The IR emission in M81 can be modeled with three components: (1) cold dust with a temperature = 18 ± 2 K, concentrated near the H II regions but also presenting a diffuse distribution; (2) warm dust with = 53 ± 7 K, directly linked with the H II regions; and (3) aromatic molecules, with diffuse morphology peaking around the H II regions. We derive several relationships to obtain total IR luminosities from IR monochromatic fluxes, and we compare five different star formation rate (SFR) estimators for H II regions in M81 and M51: the UV, H alpha, and three estimators based on Spitzer data. We find that the H alpha luminosity absorbed by dust correlates tightly with the 24 mu m emission. The correlation with the total IR luminosity is not as good. Important variations from galaxy to galaxy are found when estimating the total SFR with the 24 mu m or the total IR emission alone. The most reliable estimations of the total SFRs are obtained by combining the H alpha emission (or the UV) and an IR luminosity (especially the 24 mu m emission), which probe the unobscured and obscured SF, respectively. For the entire M81 galaxy, about 50% of the total SF is obscured by dust. The percentage of obscured SF ranges from 60% in the inner regions of the galaxy to 30% in the outer zones

    Infrared Properties of Close Pairs of Galaxies

    Get PDF
    We discuss spectroscopy and infrared photometry for a complete sample of ~ 800 galaxies in close pairs objectively selected from the CfA2 redshift survey. We use 2MASS to compare near infrared color-color diagrams for our sample with the Nearby Field Galaxy Sample and with a set of IRAS flux-limited pairs from Surace et al. We construct a basic statistical model to explore the physical sources of the substantial differences among these samples. The model explains the spread of near infrared colors and is consistent with a picture where central star formation is triggered by the galaxy-galaxy interaction before a merger occurs. For 160 galaxies we report new, deep JHK photometry within our spectroscopic aperture and we use the combined spectroscopic and photometric data to explore the physical conditions in the central bursts. We find a set of objects with H-K >= 0.45 and with a large F(FIR)/F(H). We interpret the very red H-K colors as evidence for 600-1000 K dust within compact star-forming regions, perhaps similar to super-star clusters identified in individual well-studied interacting galaxies. The galaxies in our sample are candidate ``hidden'' bursts or, possibly, ``hidden'' AGN. Over the entire pair sample, both spectroscopic and photometric data show that the specific star formation rate decreases with the projected separation of the pair. The data suggest that the near infrared color-color diagram is also a function of the projected separation; all of the objects with central near infrared colors indicative of bursts of star formation lie at small projected separation.Comment: 32 pages of text, 18 figures, accepted for publication (Astronomical Journal

    Warm Dust and Spatially Variable PAH Emission in the Dwarf Starburst Galaxy NGC 1705

    Full text link
    We present Spitzer observations of the dwarf starburst galaxy NGC 1705 obtained as part of SINGS. The galaxy morphology is very different shortward and longward of ~5 microns: short-wavelength imaging shows an underlying red stellar population, with the central super star cluster (SSC) dominating the luminosity; longer-wavelength data reveals warm dust emission arising from two off-nuclear regions offset by ~250 pc from the SSC. These regions show little extinction at optical wavelengths. The galaxy has a relatively low global dust mass (~2E5 solar masses, implying a global dust-to-gas mass ratio ~2--4 times lower than the Milky Way average). The off-nuclear dust emission appears to be powered by photons from the same stellar population responsible for the excitation of the observed H Alpha emission; these photons are unassociated with the SSC (though a contribution from embedded sources to the IR luminosity of the off-nuclear regions cannot be ruled out). Low-resolution IRS spectroscopy shows moderate-strength PAH emission in the 11.3 micron band in the eastern peak; no PAH emission is detected in the SSC or the western dust emission complex. There is significant diffuse 8 micron emission after scaling and subtracting shorter wavelength data; the spatially variable PAH emission strengths revealed by the IRS data suggest caution in the interpretation of diffuse 8 micron emission as arising from PAH carriers alone. The metallicity of NGC 1705 falls at the transition level of 35% solar found by Engelbracht and collaborators; the fact that a system at this metallicity shows spatially variable PAH emission demonstrates the complexity of interpreting diffuse 8 micron emission. A radio continuum non-detection, NGC 1705 deviates significantly from the canonical far-IR vs. radio correlation. (Abridged)Comment: ApJ, in press; please retrieve full-resolution version from http://www.astro.wesleyan.edu/~cannon/pubs.htm

    Orexin-1 receptor antagonism does not reduce the rewarding potency of cocaine in Swiss–Webster mice

    Get PDF
    The orexin family of hypothalamic neuropeptides has been implicated in reinforcement mechanisms relevant to both food and drug reward. Previous behavioral studies with antagonists at the orexin A-selective receptor, OX1, have demonstrated its involvement in behavioral sensitization, conditioned place-preference, and self-administration of drugs of abuse. Adult male Swiss-Webster mice were implanted with stimulating electrodes to the lateral hypothalamus and trained to perform intracranial self-stimulation (ICSS). The effects of the OX1-selective antagonist SB 334867 on brain stimulation-reward (BSR) and cocaine potentiation of BSR were measured. SB 334867 (10 – 30 mg/kg, i.p.) alone had no effect on ICSS performance or BSR threshold. Cocaine (1.0 – 30 mg/kg i.p.) dose-dependently potentiated BSR, measured as lowering of BSR threshold. This effect was not blocked by 30 mg/kg SB 334867 at any cocaine dose tested. In agreement with previous reports, SB 334867 resulted in a reduction of body weight 24 hours after acute administration. Based on these data, it is concluded that orexins acting at OX1 do not contribute to BSR; and are not involved in the reward-potentiating actions of cocaine on BSR. The data are discussed in the context of prior findings of SB 334867 effects on drug-seeking and drug-consuming behaviors
    corecore