420 research outputs found

    Transport properties of annealed CdSe nanocrystal solids

    Full text link
    Transport properties of artificial solids composed of colloidal CdSe nanocrystals (NCs) are studied from 6 K to 250 K, before and after annealing. Annealing results in greatly enhanced dark and photocurrent in NC solids, while transmission electron microscopy (TEM) micrographs show that the inter-dot separation decreases. The increased current can be attributed to the enhancement of inter-dot tunneling caused by the decreased separation between NCs and by chemical changes in their organic cap. In addition, the absorption spectra of annealed solids are slightly red-shifted and broadened. These red-shifts may result from the change of the dielectric environment around the NCs. Our measurements also indicate that Coulomb interactions between charges on neighboring NCs play an important role in the tunneling current.Comment: 24 pages,4 figures, 1 tabl

    Imaging the charge transport in arrays of CdSe nanocrystals

    Full text link
    A novel method to image charge is used to measure the diffusion coefficient of electrons in films of CdSe nanocrystals at room temperature. This method makes possible the study of charge transport in films exhibiting high resistances or very small diffusion coefficients.Comment: 4 pages, 4 jpg figure

    Levy statistics and anomalous transport in quantum-dot arrays

    Full text link
    A novel model of transport is proposed to explain power law current transients and memory phenomena observed in partially ordered arrays of semiconducting nanocrystals. The model describes electron transport by a stationary Levy process of transmission events and thereby requires no time dependence of system properties. The waiting time distribution with a characteristic long tail gives rise to a nonstationary response in the presence of a voltage pulse. We report on noise measurements that agree well with the predicted non-Poissonian fluctuations in current, and discuss possible mechanisms leading to this behavior.Comment: 7 pages, 2 figure

    Quantum toboggans: models exhibiting a multisheeted PT symmetry

    Full text link
    A generalization of the concept of PT-symmetric Hamiltonians H=p^2+V(x) is described. It uses analytic potentials V(x) (with singularities) and a generalized concept of PT-symmetric asymptotic boundary conditions. Nontrivial toboggans are defined as integrated along topologically nontrivial paths of coordinates running over several Riemann sheets of wave functions.Comment: 16 pp, 5 figs. Written version of the talk given during 5th International Symposium on Quantum Theory and Symmetries, University of Valladolid, Spain, July 22 - 28 2007, webpage http://tristan.fam.uva.es/~qts

    Population Dynamics and Genetics of Plant Disease: A Case Study of Anther-Smut Disease

    Get PDF
    This is the publisher's version, also available electronically from http://www.jstor.org/stable/info/2265569A model by Levin and Udovic (1977) emphasizes the need for integration of studies of the numerical abundances and genetic composition of host and pathogen species. We use their conceptual framework to summarize our collaborative research on the ecological genetics of the anther-smut disease of Silene alba caused by the fungus Ustilago violacea. Our theoretical investigations have revealed the importance of the rate and mode of disease transmission on the likelihood of coexistence between host and pathogen. Our empirical studies have quantified patterns of disease spread on local and regional spatial scales and have shown that host genotypes differ greatly in resistance. Comparable genetic variation in pathogen virulence has not yet been demonstrated. The genetic composition of host populations alters numerical dynamics in experimental populations: disease declines in resistant populations, while host and pathogen appear to coexist in susceptible populations. Ecological outcomes also may be affected by the negative relationship between disease incidence and host flowering time, which may constitute a "cost" to resistance. We are currently expanding our work on the ecology and genetics of metapopulation dynamics of host and pathogen

    Eigenvalues and Singular Values of Products of Rectangular Gaussian Random Matrices

    Full text link
    We derive exact analytic expressions for the distributions of eigenvalues and singular values for the product of an arbitrary number of independent rectangular Gaussian random matrices in the limit of large matrix dimensions. We show that they both have power-law behavior at zero and determine the corresponding powers. We also propose a heuristic form of finite size corrections to these expressions which very well approximates the distributions for matrices of finite dimensions.Comment: 13 pages, 3 figure

    Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids

    Get PDF
    Abstract Background Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids. Results We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations. Conclusions Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs.https://deepblue.lib.umich.edu/bitstream/2027.42/148209/1/12977_2019_Article_468.pd

    Electronic transport in films of colloidal CdSe nanocrystals

    Full text link
    We present results for electronic transport measurements on large three-dimensional arrays of CdSe nanocrystals. In response to a step in the applied voltage, we observe a power-law decay of the current over five orders of magnitude in time. Furthermore, we observe no steady-state dark current for fields up to 10^6 V/cm and times as long as 2x10^4 seconds. Although the power-law form of the decay is quite general, there are quantitative variations with temperature, applied field, sample history, and the material parameters of the array. Despite evidence that the charge injected into the film during the measurement causes the decay of current, we find field-scaling of the current at all times. The observation of extremely long-lived current transients suggests the importance of long-range Coulomb interactions between charges on different nanocrystals.Comment: 11 pages, 10 figure

    Semiclassical approach to fidelity amplitude

    Full text link
    The fidelity amplitude is a quantity of paramount importance in echo type experiments. We use semiclassical theory to study the average fidelity amplitude for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit --attained approximately by strongly chaotic systems-- and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us bridge the gap between both extreme cases.Comment: 10 pages, 9 figures. Version closest to published versio

    Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids

    Get PDF
    Background: Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids. Results: We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations. Conclusions: Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs
    • 

    corecore