16 research outputs found

    New Urea Derivatives Are Effective Anti-senescence Compounds Acting Most Likely via a Cytokinin-Independent Mechanism

    Get PDF
    Stress-induced senescence is a global agro-economic problem. Cytokinins are considered to be key plant anti-senescence hormones, but despite this practical function their use in agriculture is limited because cytokinins also inhibit root growth and development. We explored new cytokinin analogs by synthesizing a series of 1,2,3-thiadiazol-5-yl urea derivatives. The most potent compound, 1-(2-methoxy-ethyl)-3-1,2,3-thiadiazol-5-yl urea (ASES - Anti-Senescence Substance), strongly inhibited dark-induced senescence in leaves of wheat (Triticum aestivum L.) and Arabidopsis thaliana. The inhibitory effect of ASES on wheat leaf senescence was, to the best of our knowledge, the strongest of any known natural or synthetic compound. In vivo, ASES also improved the salt tolerance of young wheat plants. Interestingly, ASES did not affect root development of wheat and Arabidopsis, and molecular and classical cytokinin bioassays demonstrated that ASES exhibits very low cytokinin activity. A proteomic analysis of the ASES-treated leaves further revealed that the senescence-induced degradation of photosystem II had been very effectively blocked. Taken together, our results including data from cytokinin content analysis demonstrate that ASES delays leaf senescence by mechanism(s) different from those of cytokinins and, more effectively. No such substance has yet been described in the literature, which makes ASES an interesting tool for research of photosynthesis regulation. Its simple synthesis and high efficiency predetermine ASES to become also a potent plant stress protectant in biotechnology and agricultural industries

    Effect of CPPU-derived inhibitors of cytokinin oxidase on de novo shoot formation

    No full text

    Cytokinin oxidase/dehydrogenase inhibitors stimulate 2iP to induce direct somatic embryogenesis in Coffea arabica

    No full text
    Somatic embryogenesis in Coffea spp. is important for mass production and genetic engineering. Coffee is an exceptional case, as somatic embryogenesis can be induced by applying a cytokinin such as 2iP as the only plant growth regulator. 1-(2-(2-Hydroxyethyl)phenyl)-3-(3-(trifluoromethoxy)phenyl)urea (3TFM-2HE) and 1-(3-bromo-5-(trifluoromethoxy)phenyl)-3-(2-(2-hydroxyethyl)phenyl)urea (3TFM,5Br-2HE) are two newly designed cytokinin oxidase/dehydrogenase inhibitors (CKX) from the diphenylurea group. We used a Coffea arabica leaf disks bioassay to demonstrate the indirect somatic embryo induction potential of these compounds. The leaf disks were incubated on modified Murashige and Skoog (MS) semi-solid medium in which 3TFM-2HE or 3TFM,5Br-2HE were combined with N-6-(2-isopentenyl)adenine (2iP). Although these compounds do not possess intrinsic cytokinin activity, they enhanced the activity of 2iP, resulting in direct somatic embryogenesis after seven weeks. The best results were obtained with 1 mu M 3TFM-2HE and 5 or 10 mu M 2iP. Maturation of somatic embryos into fully developed plants took place on medium supplemented with 0.5 mu M kinetin and the somatic embryos developed true leaves and a root system

    Role of Cytokinins in Senescence, Antioxidant Defence and Photosynthesis

    No full text
    Cytokinins modulate a number of important developmental processes, including the last phase of leaf development, known as senescence, which is associated with chlorophyll breakdown, photosynthetic apparatus disintegration and oxidative damage. There is ample evidence that cytokinins can slow down all these senescence-accompanying changes. Here, we review relationships between the various mechanisms of action of these regulatory molecules. We highlight their connection to photosynthesis, the pivotal process that generates assimilates, however may also lead to oxidative damage. Thus, we also focus on cytokinin induction of protective responses against oxidative damage. Activation of antioxidative enzymes in senescing tissues is described as well as changes in the levels of naturally occurring antioxidative compounds, such as phenolic acids and flavonoids, in plant explants. The main goal of this review is to show how the biological activities of cytokinins may be related to their chemical structure. New links between molecular aspects of natural cytokinins and their synthetic derivatives with antisenescent properties are described. Structural motifs in cytokinin molecules that may explain why these molecules play such a significant regulatory role are outlined

    Antimicrobial and anthelmintic activities of aryl urea agents

    No full text
    Objectives The study aimed to characterise compounds with activity against carbapenemase-expressing Gram-negative bacteria and nematodes, with the intention that the compounds would lack cytotoxicity against non-cancer human cells. Methods The antimicrobial activity and toxicity to nematodes and human cell lines of a series of phenyl substituted urea derivatives were evaluated using Minimum Inhibitory Concentration (MIC), chitinase and resazurin reduction assays. Results The effects of different substitutions present on the nitrogen atoms of the urea backbone were investigated. Several compounds were active against Staphylococcus aureus and Escherichia coli control strains. Specifically, derivatives 7b, 11b, and 67d exhibited antimicrobial activity against Klebsiella pneumoniae 16, a Carbapenemase-Producing Enterobacteriaceae (CPE) species, with Minimum Inhibitory Concentration (MIC) values of 100, 50 and 72 ÎŒM (32, 64 and 32 mg/L), respectively. In addition, the MICs obtained against a multi-drug resistant E. coli strain were 100, 50 and 36 ÎŒM (32, 16 and 16 mg/L), for the same compounds. Furthermore, the urea derivatives 18b, 29b, 50c, 51c, 52c, 55c – 59c and 62c were very active towards the nematode Caenorhabditis elegans. Conclusions Testing on non-cancer human cell lines suggested that some of the compounds have potential to affect bacteria and especially helminths with limited cytotoxicity for humans. Given the simplicity of synthesis for this class of compound and the potency against a Gram-negative carbapenemase-expressing Klebsiella pneumoniae, aryl ureas possessing the 3,5-dichloro-phenyl group certainly warrant further investigation to exploit their selectivity

    Improvement of Tillering and Grain Yield by Application of Cytokinin Derivatives in Wheat and Barley

    No full text
    Three cytokinin derivatives (CKd) designated as RR-G, RR-O, and RR-V applied by foliar spraying at tillering, and one compound previously described as a cytokinin antagonist (CKa) designated as RR-P applied as a seed coating were tested in winter wheat and spring barley in field trial experiments. The aim of the study was to examine the influence of the compounds that were tested on the number of productive tillers, grain yield, and endogenous CK content. With the exception of the compound RR-V, the measured parameters clearly showed the stimulatory effects of CKd on tillering and grain yield in spring barley and winter wheat. The RR-V showed a stimulatory effect on the number of productive tillers and yield in spring barley, but not in winter wheat. Although in winter wheat CKa stimulated both the number of productive tillers and the grain yield, there was an inhibitory effect in terms of the number of productive tillers observed in spring barley. The results of the endogenous cytokinin analysis suggested, among others, the importance of the role of isopentenyl-adenine types of cytokinins in the tillering of spring barley. In conclusion, the cytokinin derivative compounds with an agonistic or antagonistic role showed strong potential for application in the future development of plant growth regulators

    Phenyl- and benzylurea cytokinins as competitive inhibitors of cytokinin oxidase/dehydrogenase: a structural study

    No full text
    Cytokinin oxidase/dehydrogenase (CKO) is a flavoenzyme, which irreversibly degrades the plant hormones cytokinins and thereby participates in their homeostasis. Several synthetic cytokinins including urea derivatives are known CKO inhibitors but structural data explaining enzyme inhibitor interactions are lacking. Thus, an inhibitory study with numerous urea derivatives was undertaken using the maize enzyme (ZmCKO1) and the crystal structure of ZmCKO1 in a complex with N-(2-chloro-pyridin-4-yl)-N'-phenylurea (CPPU) was solved. CPPU binds in a planar conformation and competes for the same binding site with natural substrates like N(6)-(2-isopentenyl)adenine (iP) and zeatin (Z). Nitrogens at the urea backbone are hydrogen bonded to the putative active site base Asp169. Subsequently, site-directed mutagenesis of L492 and E381 residues involved in the inhibitor binding was performed. The crystal structures of L492A mutant in a complex with CPPU and N-(2-chloro-pyridin-4-yl)-N'-benzylurea (CPBU) were solved and confirm the importance of a stacking interaction between the 2-chloro-4-pyridinyl ring of the inhibitor and the isoalloxazine ring of the FAD cofactor. Amino derivatives like N-(2-amino-pyridin-4-yl)-N'-phenylurea (APPU) inhibited ZmCKO1 more efficiently than CPPU, as opposed to the inhibition of E381A/S mutants, emphasizing the importance of this residue for inhibitor binding. As highly specific CKO inhibitors without undesired side effects are of major interest for physiological studies, all studied compounds were further analyzed for cytokinin activity in the Amaranthus bioassay and for binding to the Arabidopsis cytokinin receptors AHK3 and AHK4. By contrast to CPPU itself, APPU and several benzylureas bind only negligibly to the receptors and exhibit weak cytokinin activity

    Biochemical and structural basis of polyamine, lysine and ornithine acetylation catalyzed by spermine/spermidine N ‐acetyl transferase in moss and maize

    No full text
    Polyamines such as spermidine and spermine are essential regulators of cell growth, differentiation, maintenance of ion balance and abiotic stress tolerance. Their levels are controlled by the spermidine/spermine N 1 ‐acetyltransferase (SSAT) via acetylation to promote either their degradation or export outside the cell as shown in mammals. Plant genomes contain at least one gene coding for SSAT (also named NATA for N ‐AcetylTransferase Activity). Combining kinetics, HPLC‐MS and crystallography, we show that three plant SSATs, one from the lower plant moss Physcomitrium patens and two from the higher plant Zea mays , acetylate various aliphatic polyamines and two amino acids lysine (Lys) and ornithine (Orn). Thus, plant SSATs exhibit a broad substrate specificity, unlike more specific human SSATs (hSSATs) as hSSAT1 targets polyamines, whereas hSSAT2 acetylates Lys and thiaLys. The crystal structures of two PpSSAT ternary complexes, one with Lys and CoA, the other with acetyl‐CoA and polyethylene glycol (mimicking spermine), reveal a different binding mode for polyamine versus amino acid substrates accompanied by structural rearrangements of both the coenzyme and the enzyme. Two arginine residues, unique among plant SSATs, hold the carboxyl group of amino acid substrates. The most abundant acetylated compound accumulated in moss was N 6 ‐acetyl‐Lys, whereas N 5 ‐acetyl‐Orn, known to be toxic for aphids, was found in maize. Both plant species contain very low levels of acetylated polyamines. The present study provides a detailed biochemical and structural basis of plant SSAT enzymes that can acetylate a wide range of substrates and likely play various roles in planta
    corecore