23 research outputs found

    Soil phosphorus (P) budgets, P availability and P use efficiencies in conventional and organic cropping systems of the DOK trial

    Get PDF
    Cropping systems rely on the provision of adequate amounts of phosphorus (P) to enable stable crop yields. A balanced application of P is necessary to avoid reduced crop yields (in case of too low application rates), but also to avoid P losses to other ecosystems (in case of too high application rates). While in conventional cropping systems the use of synthetic P fertilizers is common practice, organic cropping systems mostly rely on organic P inputs such as farmyard manure or compost. We aimed to answer if different cropping systems attain balanced P application rates in the long run, and how plant P availability is affected by different cropping systems and forms of fertilizers applied

    Nitrogen Budgets and Soil Nitrogen Stocks of Organic and Conventional Cropping Systems: Trade-Off between Efficiency and Sustainability of Nitrogen Use

    Get PDF
    Organic and conventional cropping systems differ in the nature and amounts of nitrogen (N) inputs, which may affect efficiency and sustainability of N use. In the DOK (bio-Dynamic, bio-Organic, Konventionell) field experiment, organic and conventional cropping systems have been compared since 1978 at two fertilization levels. Nitrogen inputs via manure and/or mineral fertilizers, and N exports from plots with harvested products have throughout been recorded. For all treatments, N outputs with harvests have exceeded the inputs with fertilizers. Over the past years, symbiotic N2 fixation by soybean and clover grown in the trial has additionally been assessed, indicating average annual inputs of about 100 kg ha-1 yr-1 of N fixed from the atmosphere. Soil surface budgets opposing N inputs via fertilization, symbiotic fixation, seeds and deposition to N outputs via harvested products have been computed at the plot level for the duration from 1985 to 2012. The resulting balances range from negative values of about -20 kg N ha-1 yr-1 (where outputs exceed the sum of said N inputs) to surpluses of about +50 kg N ha-1 yr-1. The budget based N use efficiency (NUE; N output via harvested products divided by sum of N inputs) in the case of negative balances suggests irrationally high NUE (>100%), while positive balances are related to lower NUE for treatments with inputs exceeding outputs. Negative balances, however, indicate soil N mining, while surpluses point to a risk of N losses, and/or N accumulation in the soil. Estimation of soil N stock changes based on yearly total N concentration measurements in the topsoil layer is currently ongoing. Preliminary results suggest that soil N stocks in the topsoil decreased under all treatments more than expected from the N balance, and that positive N balances are needed to maintain topsoil N stocks. An increase in soil N concentration was observed in none of the treatments. In conclusion, the results indicate an efficiency-sustainability trade-off. Treatments with a higher NUE lose more soil stock N than those with a lower NUE. Treatments with lower NUE indicate higher N losses from the studied crop-topsoil system. Sustainable soil N management in addition to organic fertilizer inputs might at this site require reduced soil tillage. The significance of N contained in deeper soil layers, and deep rooting crops in recovering leached N should as well be investigated

    Simulating the effect of climatic variations on the long-term performance of different agroforestry systems within field trials using virtual experiments

    Get PDF
    Agroforestry systems can reduce some of the adverse effects of climate change in agriculture by e.g. serving as a windbreak or shade provider to protect crops or grazing livestock and supporting beneficial species for pest control. The prediction of the long-term performance of different agroforestry options is however difficult to obtain through field quantify experiments due to the length of time trees grow for experiments. Numerical modelling can contribute to a better understanding of a system’s performance, since the effect of different climatic alterations can be tested using virtual experiments for different periods of time. Within the Horizon 2020 AGROMIX project, we are analysing the long-term performance of eight different agroforestry trials (Figure 1), using different modelling approaches. The trials are spread over three biogeographic regions (Mediterranean, Continental, and Atlantic) and are of varying age (4 to 33 years). In total, six silvoarable and five silvopastoral farming systems are maintained at the eight field trials. Through the use of different numerical models the effect of changes in temperature and precipitation patterns or the occurrence of extreme events such as droughts or late spring frost on the different agroforestry systems will be predicted. Additionally, experimental data on crop performance as well as animal behaviour and welfare, in particular under heat stress, are being obtained and will potentially be included in the model predictions. This poster aims to give an overview on the field trials and the numerical modelling approaches that are being applied to predict long-term system performance

    Multilayered Mechanism of CD4 Downregulation by HIV-1 Vpu Involving Distinct ER Retention and ERAD Targeting Steps

    Get PDF
    A key function of the Vpu protein of HIV-1 is the targeting of newly-synthesized CD4 for proteasomal degradation. This function has been proposed to occur by a mechanism that is fundamentally distinct from the cellular ER-associated degradation (ERAD) pathway. However, using a combination of genetic, biochemical and morphological methodologies, we find that CD4 degradation induced by Vpu is dependent on a key component of the ERAD machinery, the VCP-UFD1L-NPL4 complex, as well as on SCFβ-TrCP-dependent ubiquitination of the CD4 cytosolic tail on lysine and serine/threonine residues. When degradation of CD4 is blocked by either inactivation of the VCP-UFD1L-NPL4 complex or prevention of CD4 ubiquitination, Vpu still retains the bulk of CD4 in the ER mainly through transmembrane domain interactions. Addition of a strong ER export signal from the VSV-G protein overrides this retention. Thus, Vpu exerts two distinct activities in the process of downregulating CD4: ER retention followed by targeting to late stages of ERAD. The multiple levels at which Vpu engages these cellular quality control mechanisms underscore the importance of ensuring profound suppression of CD4 to the life cycle of HIV-1

    Repeated drying and rewetting differently affect abiotic and biotic soil phosphorus (P) dynamics in a sandy soil: A33P soil incubation study

    Get PDF
    Soil drying and rewetting (DRW) events are expected to occur at higher frequencies because of alterations in climate patterns. Readily extractable inorganic and microbial soil phosphorus (P) pools may be affected due to rapid changes in soil water availability. We aimed to determine how soil P dynamics are affected by repeated soil DRW using a sandy grassland soil that regularly experiences DRW. In a laboratory soil incubation study, the soil was exposed to three DRW cycles, with each cycle consisting of a two-day drying phase, a three-day dryness phase and a four-day moist phase after rapid rewetting. The indicators of abiotic processes (P sorption) and biotic processes (respiration, microbial abundance, potential phosphatase enzyme activities) were regularly determined together with water-extractable P, resin-extractable P and microbial P in a 33P-labelled soil. During the first DRW cycle, microbial P was reduced by half and accompanied by a concomitant but not equivalent increase in water-extractable P and a slight as well as delayed increase in resin-extractable P. Thus, increases in water-extractable P were explained by microbial P released during drying but also by microbial P occupying soil P sorption sites, thereby decreasing soil P sorption. Changes in the 33P-isotopic composition of microbial P at the same time suggested that microorganisms did not respond homogenously to the DRW treatment and indicated an increased mineralisation of previously unavailable organic P compounds. However, during the second and third DRW cycles, only water-extractable P, soil P sorption and potential phosphatase activities were affected by the DRW treatment, whereas all other parameters remained similar in values to the constant moist treatment. The effects of DRW on soil P dynamics appeared to affect water-extractable P more long-lastingly, whereas microbial P and most of the biotic indicators quickly adjusted to the DRW treatment. We conclude that the current concepts suggesting an increased mobility of soil P towards other environmental compartments due to soil DRW should consider that abiotic and biotic soil P dynamics are not equally affected in the case of short repetition of DRW incidences.ISSN:0038-0717ISSN:1879-342

    Manufacturing triple-isotopically labeled microbial necromass to track C, N and P cycles in terrestrial ecosystems

    No full text
    The functional relevance of microbial necromass in terrestrial biogeochemical cycles remains one of the unresolved mysteries of element cycling in ecosystems, especially considering the high microbial abundance and turnover in soil. We therefore established a protocol to manufacture multi-isotope (14C, 15N and 33P) labeled microbial necromass to comprehensively track the turnover of microbial necromass elements within element cycles. This protocol encompasses the i) microbial cultivation of Pseudomonas kilonensis ACN4 (Gram-negative) and Bacillus licheniformis DSM13 (Gram-positive) on labeled minimal medium as well as fungal cultivation of Hypsizygus tessulatus on a complex yeast medium, ii) quantification of radio- (14C, 33P) and stable (15N) isotope incorporation as well their cellular pool partitioning, and iii) determination of element and tracer isotope uptake efficiency. We achieved 1 g of bacterial biomass per liter minimum medium within 24 h and 2.9 g l-1 fungal biomass in complex medium within 18 d. This production rate enabled us to produce more than 100 g of necromass within only one half-life time of 33P, including post-harvest processing. Isotope uptake and incorporation for 33P ranged from 10 to 73%, for 15N from 24 to 52%, and for 14C from 12 to 23%. Each of the cultivated species showed individual patterns of tracer element uptake. The nutritional value of the carbon- (C), nitrogen- (N) and phosphorus- (P) labeled microbial necromass was characterized by a water-based, necromass speciesspecific partitioning scheme with subsequent elemental analysis of the pools. We separated Gram-negative, Gram-positive and fungi’s cellular pools to characterize element and tracer partitioning among dissolved versus particulate fractions. That is essential because these properties subsequently affect the respective pool's availability for ecosystem nutrition. Our procedure allows a defined production of microorganism-based necromass, enabling versatile use to determine necromass-related nutrient fluxes in terrestrial ecosystem studies

    Umweltwirkung und Produktivität von biologischen und konventionellen Systemen - Ergebnisse aus 42 Jahre DOK Versuch

    No full text
    Die Landwirtschaft ist eine der Haupttriebkräfte des globalen Wandels, und es werden dringend Produktionssysteme benötigt, die die Umwelt schonen. Der ökologische Landbau wird als Alternative zu konventionellen Anbausystemen angesehen, da er sich auf die Gesundheit der Böden und die langfristige Nachhaltigkeit konzentriert. Messungen über einen Zeitraum von 42 Jahren im DOK-Versuch, dem ältesten landwirtschaftlichen Systemvergleichsexperiment der Welt zeigen, dass Kohlenstoff und Stickstoff im Boden durch organischen Dünger stabilisiert und bei ausschließlicher Verwendung von Mineraldünger verringert werden

    A randomized cross-over trial on the direct effects of oxygen supplementation therapy using different devices on cycle endurance in hypoxemic patients with Interstitial Lung Disease.

    No full text
    BackgroundIn patients with interstitial lung disease (ILD) a cardinal feature is exercise intolerance, often associated with significant dyspnea and severe hypoxemia. Supplemental oxygen therapy may be offered during exercise. The Oxymizer is a nasal cannula with an incorporated reservoir with the potential to deliver higher oxygen doses to the patient.ObjectiveThe primary aim was to investigate the effect of supplemental oxygen delivered via Oxymizer compared to a conventional nasal cannula (CNC) in patients with ILD during constant work rate tests (CWRT). Secondary aim was to evaluate effects on oxygen saturation (SpO2), dyspnea and heart rate at isotime.MethodsIn this randomized crossover study 24 ILD patients established on long-term oxygen treatment were included. Patients performed four cycling CWRT at 70% of their peak work rate; twice with the Oxymizer and twice with the CNC.ResultsTwenty-one patients finished all CWRTs (age 60 ± 10.9 years, VC 55.4 ± 23.0%predicted). Cycle endurance time was significantly higher while using the Oxymizer compared to CNC (718 ± 485 vs. 680 ± 579 seconds, p = 0.02), and SpO2 at isotime was significantly higher while using the Oxymizer (85.5 ± 6.7 vs. 82.8± 7.2, p = 0.01). Fifteen of the 21 (71%) patients cycled longer with the Oxymizer. There were no significant differences for dyspnea and heart rate.ConclusionsSupplemental oxygen provided by the Oxymizer significantly, but modestly, improved cycle endurance time and SpO2 at isotime in ILD patients compared to CNC
    corecore